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Abstract

Color vision has traditionally been the domain of many sciences: physics, physiol-
ogy, psychology, and philosophy. This thesis maintains that interdisciplinary tradition
and looks at color vision from several points of view. It focusses on the phenomenon
of color constancy and uses its formulation as a computational problem to link the
different viewpoints.

The primary contributions of the thesis are (1) the demonstration of a formal
framework for lightness algorithms, which represent one class of solution to the prob-
lem of color constancy; (2) the derivation of a new lightness algorithm based on regu-
larization theory; (3) the synthesis of an adaptive lightness algorithm using "learning"
techniques; (4) the development of a segmentation algorithm that uses color infor-
mation to mark material boundaries, with guidance from luminance edges; and (5)
an experimental investigation into the cues that human observers use to judge the
color of the illuminant, demonstrating that under certain conditions, observers ignore
correct information from specvlar reflections in favor of incorrect information from
other cues. Other computationai &pproaches to the problem of color constancy are
reviewed and some of their links to psychophysics and physiology are explored.
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Chapter 1

Introduction

Color vision has traditionally been the domain of many sciences. Physicists, physiolo-

gists, psychologists, physicians and philosophers all have found its features amenable

to analysis using the techniques of their specialities. This thesis maintains that inter-

disciplinary tradition and looks at color vision from several points of view. It focusses

on the phenomenon of color constancy and uses its formulation as a computational

problem to link the different viewpoints.

Color constancy is the tendency of objects to stay the same perceived color under

changing illumination. The computational approach to color vision in general, and

to color constancy in particular, starts with the question: what is the goal of color

vision? Why do humans exhibit color constancy? By stating clearly the goal of color

constancy, and by specifying the input data and physical limitations with which the

visual system must work, computational theorists hope to arrive at a problem that

can be solved by computational methods. The computational solution, in turn, may

be used not only to equip machines with color vision but also to shed fight on the

mechanisms underlying human color vision.

From a computational viewpoint, color vision serves two goals: first, to help

segment an image into distinct materials - that is, to help discriminate objects in

a given scene; and second, to assign objects labels that stay constant under changes

in the illumination and the scene composition - that is, to help recognize objects
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whatever their context. A ripe, yellow banana should always be distinguishable from

other fruit in the bowl, and its yellow color should remain a reliable indicator of its

edibility under almost any natural light. Ideally, the visual system could meet both

goals by labeling each object with its surface spectral reflectance properties. These

stay constant under changing illumination, scene composition and geometry, while

the light that the object reflects to the eye varies. The fact that humans do show

approximate color constancy implies that our visual system does attempt to recover

a description of the invariant spectral reflectance properties of objects. The fact that

color constancy is only approximate - colors of objects do change measurably under

different light sources - implies that the human visual system does not meet its goals

perfectly.

The computational problem that the human visual system must solve in order to

attain color constancy, and the limitations that prevent it from attaining perfect color

constancy, become clear when one considers the input data with which it is supplied.

The human retina has three types of photoreceptor - the cones - responsive to medium

and high intensities of light (the fourth type of photoreceptor - the rod - is responsive

only at low light levels and is thus said to mediate "nighttime" vision). Each cone is

selectively responsive to a different portion of the visible spectrum of light; the short-

-wavelength-sensitive (S) cone gives a peak response to light at 420 nm and essentially

no response to light beyond approximately 550 nm; the middle-wavelength-sensitive

(M) cone peaks at 534 nm and does not respond beyond approximately 650 nm; and

the long-wavelength-sensitive (L) cone peaks at 564 nm and does not respond beyond

approximately 700 nm [101. Because there are only three types of cone, and because

their spectral sensitivities are broad and overlapping, the human visual system cannot

register exactly the spectral energy distribution of light incident on the retina. It

records instead only the energy of light integrated over the spectral sensitivity range

of each cone. Thus the input data is a triplet of cone responses, each response a

measure of the incident light in either the long-, middle- or short-wavelength band of

the spectrum, with one such triplet for each location in the image (in fact, the input
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data is even further restricted by the fact that even in the fovea, the area of densest

concentration of cones, the cones are not distributed uniformly enough to provide

three types at each location). The light reflected from an object's surface into the

retina is proportional to the product of the illumination incident on the surface and

the invariant spectral reflectance properties of the surface. Thus the visual system

cannot directly extract from each cone response a measure of the surface spectral

reflectance in that wavelength band. The problem that the visual system faces is to

transform the triplet of cone responses, which vary with the type of illumination on

a given object's surface, into a set of responses that remain fixed for a given surface.1

This set of values can at best approximate a measure of surface reflectance in each of

several distinct wavelength bands, which may or may not be the same as the cones'.

Computational models of color vision, then, if they purport to explain human
color vision, must provide methods for transforming cone responses into colors that

are the same as those we perceive under all conditions. Some computational theories

do attempt to reproduce, as closely as possible, known characteristics of human color

vision. Others attempt only to construct algorithms that can achieve useful color

vision for machines. These do not explicitly attempt to model human performance,

although human performance is often the standard that vision machines strive to

reach. Most computational models, though, do not fall neatly into one of these two

types. This is perhaps because most assume that the goals of human and machine

color vision are the same and that therefore a model that meets (or attempts to meet)

that goal for a machine must be considered as an explanation of human color vision.

'Throughout this thesis, the terms "perception" and "sensation" will be used to distinguish
between two levels of color vision. Color sensation refers to the triplet of cone responses, whereas
color perception, or perceived color, refers to the transformed set of values that remain roughly
constant for a given surface under changing illumination. Unless otherwise noted, the term color will
refer to perceived color. Arend et.al. [4] demonstrate this distinction experimentally. Their results
show that we can make a distinction between the color sensation of an object and the perception of
its surface color or the judgment of the illuminant color. Their results suggest that we are aware
of both the input and output of the color computation - that we can consciously identify both the
input sensory stimulus (the retinal response to the physical stimulus) and the output surface color
judgment.

10
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Figure 1.1: The human photoreceptor spectral sensitivity curves: the rod and the
three types of cone: short-, middle- and long-wavelength-sensitive. Redrawn from
Dartnall et. al. in Colour Vision: Physiology and Psychophysics, J. D. Mollon and
L.T. Sharpe, eds. (Academic, London, 1983).
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In this thesis, the computational approach provides a framework for a study of

color vision within which the techniques and results of several disciplines may be

integrated. Three broad questions are addressed: (1) What perceptual features must

a computational model reproduce if it is to elucidate the mechanisms underlying

human color vision? (2) Do existing models accurately reproduce known features

of color vision? and (3) How might the human visual system implement the steps

required by existing models?

Chapter 2 addresses the first question by describing some well-known psychophys-

ical results on color constancy, simultaneous color contrast, segmentation and filling-

in. It briefly discusses the color vision deficits due to certain cerebral cortical lesions,

which, together with other accompanying deficits, point toward the role that color

perception plays in the whole of visual perception. The importance of color for object

recognition, for example, is suggested by the poor performance on certain recognition

tasks of some humans with cortical lesions.

Chapters 3 and 7 address the second question. Chapter 3 classifies and reviews

existing computational models of color vision, in terms of the stated problems they

attempt to solve, how well they solve them, and how well they simulate human color

constancy. The classes of color algorithms introduced here are (1) lightness algorithms,

which recover an estimate of surface reflectance in each of the three wavelength bands

represented by the cone spectral sensitivities, for the restricted world of Mondrians (2)

spectral basis algorithms, which exploit the redundancy in the responses of different

cone types at different retinal locations to recover an estimate of surface reflectance

in terms of a small number of basis functions that describe most naturally occurring

reflectances (3) segmentation algorithms, which exploit interaction between cone re-

sponses across space to distinguish material boundaries from other causes of change in

the image irradiance signal and (4) algorithms which use specular reflections as cues

to the illurninant color, for example, the chromaticity convergence algorithm. It be-

gins with a discussion of reflectance models (founded on the physics of light reflection

and image formation), which provide a basis for the image irradiance equation. This

12



equation appears in various forms as the starting-point of all computational models.

This section illustrates how the assumptions under which the equation is simplified for

certain computational models affect their applicability for both human and machine

vision. The chapter also draws new connections between existing models, makes new

predictions based on assumptions underlying the models, and briefly reviews existing

psychophysical results that bear on these predictions.

Chapter 7 describes a new psychophysical experiment that tests some of the meth-

ods described in Chapter 3 against human perception, in terms of how they directly

or indirectly recover the color of the illurninant. Lightness algorithms that normal-

ize to white correctly recover the color of the illuminant only when the reflectances

of the brightest patches in each lightness channel are the same (when the "whites"

in each channel are the same). Those that average to grey correctly recover the il-

luminant color when the average reflectance in each lightness channel is the same.

Both methods are forms of Von Kries adaptation [112]. The chromaticity conver-

gence algorithm and other similar algorithms correctly recover the illuminant color

when there is sufficient information from specular reflections in the scene. The ex-

periment reported here addresses the questions of how accurately humans perceive

the color of the illuminant and whether human perception agrees with the predic-

tions of the computational methods. Observers were asked to judge the illuminant

color in computer-generated images of Mondrian-textured spheres with and without

simulated specular reflections. The data suggest that the human visual system relies

on a form of Von Kries adaptation even when specularities provide conflicting cues.

Chapter 3 also lays the foundation for the new computational models presented

in Chapters 4, 5, and 6. Chapter 42 explores the formal connections between several

distinct lightness algorithms. It establishes a common framework for lightness algo-

rithms in the form of a single mathematical formula from which each algorithm may

be derived under different conditions. It introduces a second framework for lightness

algorithms based on regularization theory, from which a linear filter is derived that
2This chapter has been published in slightly altered form in Ref. (50].
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embodies the constraints of lightness algorithms and transforms image irradiance (the

data) into surface reflectance (the solution).

Chapter 5 builds on the regularization framework discussed in Chapter 4 to de-

scribe a new method for synthesizing lightness algorithms that can adapt to their
'environment'3 . Here the assumption is made that a linear filter that transforms irra-

diance into reflectance exists, but no constraints on its form are imposed. Instead it

is synthesized directly from pairs of input and output examples, and thus adapts to

them as they change, 'discovering' the constraints employed by analytically-derived

lightness algorithms. The examples used are one-dimensional Mondrian reflectance

patterns under varying types of illumination gradients. The simplest linear synthesiz-

ing technique, optimal linear estimation, is compared with the nonlinear techniques of

backpropagation (BP) and optimal polynomial estimation. Optimal linear estimation

produces a lightness operator that is approximately equivalent to a center-surround,

or bandpass, filter and which resembles the filter derived from regularization theory,

which in turn resembles a new lightness algorithm recently proposed by Land. Re-

quiring only one assumption, that the operator that transforms input into output

is linear, the technique finds the linear estimator that best maps input into desired

output, in the least squares sense. This assumption is true for a certain class of early

vision algorithms that may therefore be synthesized in a similar way. Although BP

performs slightly better on new input data than the estimated linear operator, the

optimal polynomial operator of order two performs marginally better than both. The

techniques developed here might be useful for other vision algorithms whose con-

straints might not be known in advance or for vision algorithms that must work in

several different environments under different constraints.

The lightness operators synthesized in Chapter 5 (whether by optimal linear esti-

mation, BP, or optimal polynomial estimation) accurately reproduce certain features

of human lightness and color perception - lightness constancy under spatial changes

in the illumination and simultaneous color contrast, for example - but fail to repro-

'This chapter has been published in slightly altered form in Refs. [51] and [52].
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duce other features, in particular those that involve interaction between luminance

and chrominance information, such as filling-in. This interaction is essential to the

problem of image segmentation (how to segment an image into distinct materials)

which is the first goal of color vision. Although humans effortlessly segment scenes

into distinct objects, vision machines still can not. Chapter 6 presents a group of new

segmentation algorithms, implemented on simulated neural networks, which mark

boundaries between image regions of different surface reflectance and fill in uniform

color labels. By analogy with the color filling-in phenomenon of human vision, the

algorithms use luminance edges to help localize discontinuities in surface reflectance

and guide the filling-in operators. They perform well on synthetic and natural im-

ages even in the presence of image irradiance changes due to shading, shadows and

specularities.

Chapter 8 addresses the third question: how might the human visual system

implement the algorithms proposed by computational models? It discusses what

sort of cells would be required by certain lightness algorithms and discusses what

computational uses known cells might serve. In particular, it poses the puzzle of

single-opponent cells, which at first glance appear unsuited for any computational

purpose, and outlines a new argument for their existence.

In summary, the primary contributions of this thesis are (1) the demonstration

of a formal framework for lightness algorithms, which represent one class of solution

to the problem of color constancy; (2) the derivation of a new lightness algorithm

based on regularization theory; (3) the synthesis of an adaptive lightness algorithm

using and comparing two "learning" techniques, optimal linear estimation and back-

propagation; (4) the development of a segmentation algorithm that uses color infor-

mation to mark material boundaries, with guidance from luminance edges; and (5)

an experimental investigation into the cues that human observers use to judge the

color of the illuminant, demonstrating that under certain conditions, observers ignore

correct information from specular reflections in favor of incorrect information from

other cues.
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Chapter 2

Features of Color Vision

2.1 Color Constancy

A fundamental feature of human color vision is color constancy: our ability to assign

roughly constant colors to objects even though the light they reflect to the eye varies

over time, space, and spectrum. A red apple is red at morning or evening, under

skylight or candlelight. The phenomenon of color constancy has long been appreciated

by color vision scientists but still has not been explained by a complete model of color

vision. In 1789, the French scientist Monge observed that red objects appeared white

when viewed against a richly colored background through a piece of red glass, yet

appeared red when observed individually through the same lens [84]. Helmholtz

(1866) [108] concluded that the perception of color must involve an act of judgment,

in which the effects of the illuminant were discounted. Helson and Judd (1936) [40]

chronicled the subtle or striking changes in chromaticity of colored papers under

different illuminants, calling the changes "color conversion". Buchsbaum (1980) [15],

focussing on the strong shifts in colors of objects under certain illuminants, such as

fluorescent ones, wrote that the phenomenon should be renamed "color inconstancy".

Land (1971) [61] revived interest in color constancy with his elaborate "Mondrian"

displays, reminiscent of Monge's simpler demonstrations. Today color constancy is

studied intensively not only as a fundamental feature of human vision but also as

the ultimate goal for image processors and intelligent machines, essential not only
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for accurate image production in, for example, the photographic industry, but also

for object recognition tasks in a range of applications from car manufacturing to

surveillance.

2.1.1 The Mondrian Demonstrations: Spectral Normaliza-
tion and Spatial Decomposition

Land aroused new interest in color constancy by performing striking experiments with

two-dimensional surfaces covered with rectangular patches of random colors, named

Mondrians after the twentieth-century Dutch painter Piet Mondrian. In one demon-

stration, Land illuminates a Mondrian with three differently-colored light beams,

created by putting a different narrow-band filter on each of three light sources. He

then adjusts the intensity of the sources so that the light reflected from patch A in

the first viewing is the same in each of the three chromatic channels as the light

reflected from patch B in the second viewing. Yet the perceived colors of the two

patches are different from each other and stay roughly constant from one viewing to

the next. Conversely, the color of patch A changes when the light reflected from it

is held constant while the light from the surrounding patches is changed. From these

results, Land draws the forceful conclusion that "the color of an object is not solely

determined by the light it reflects" [61].

In another demonstration, Land adjusts an illumination gradient across a black-

and-white Mondrian so that a dark grey patch at the top of the Mondrian reflects

the same amount of light as a light grey patch at the bottom. Yet the top patch

appears darker than the bottom patch, and the greys of both patches stay constant

when the illumination is made uniform across the Mondrian. Other results [80, 33]

indicate that we do not see slow illumination gradients' and that we interpret the

slow irradiance gradients that we do see as due to the illumination rather than the

1The visibility of a linear gradient of illumination appears to depend only on its contrast (Lm. -

Ltn/Lvn s where L,,, is the maximum illumination value and Linn the minimum) and not on
the retinal gradient it produces (contrast divided by the retinal angle subtended by the illumination
gradient). Threshold visibility is about 10%. (80, 33]
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surface reflectance properties of the object [3].

Land's Mondrian demonstrations illustrate two features of color constancy. The

first is spectral normalization, our ability to compensate for temporal changes in the

color of the illuminant. The second is spatial decomposition, our ability to compensate

for spatial changes in the illuminant energy.

2.2 Simultaneous Color Contrast: A Close Cousin
of Constancy

Land's Mondrian demonstrations imply that in computing constant colors we can

compensate for changing illumination but no' for changing backgrounds. In Land's

demonstrations, when the illuminant color changes, the light that a patch reflects

changes in the same way as the light that its surround reflects. The ratio of patch

to surround reflection does not change and that ratio, computed in a particular way,

correlates with constant colors. Conversely, when the light from the surround changes,

the ratio changes, and the patch color changes. Explained in this way, color constancy

implies color contrast. 2

Simultaneous brightness contrast (or simultaneous darkness induction, as the phe-

nomenon is more precisely termed by Creutzfeldt et. al. [18]) is the tendency of

objects to look darker when against a bright background than when against a dark

background. Simultaneous color contrast is the tendency of objects to change color

when the background color changes. Although brightness and color contrast, like

color constancy, have been studied for well over a hundred years, their relationships

to each other and to color constancy are not fully understood.

The Gestalt psychologist Koffka [541 argued that color constancy and color con-

trast produced opposing effects, using the following experiment. An object casts a
2Yet Land's original model of color computation - the original Retinex - assumed that the

environments to which it applied were sufficiently Mondrian-like that the surrounds of all objects
or patches would average to roughly the same color. Thus his model did not predict color contrast
effects. See the discussion of the grey-world assumption in Chapter 3.
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shadow on a piece of white paper, with the whole scene illuminated by yellow light.

The paper, which reflects yellow light, looks white and the shadow, which reflects

grey light, looks blue. If yellow paper is now put in place of the white paper, but

without covering the shadowed area, the paper looks yellow and the shadow looks

grey. Koffka argued that color contrast would tend to make the shadow look even

more blue when its surroundings look yellow, but that color constancy, by normaliz-

ing the yellow illuminant color to white, only makes the shadow less yellow than its

surroundings.

On the other hand, Koffka argued that color contrast and color constancy could

not be distinct phenomena, but that both must involve central, rather than simply

retinal, mechanisms. Color contrast, for example, did not depend just on the absolute

reflectances and shapes of objects, but rather on the "forces of unit formation" (see

the description of the Koffka Ring, section 2.3). Color constancy also depended on

higher-order mechanisms that first segregated scenes into different objects using, for

example, depth information before assigning colors.

Lettvin [14, 65] emphasizes that the color of an object depends on the colors of

objects in its immediate surround, and that therefore the constancy of the colors in

Land's Mondrians is an exceptional result due to their richly random arrangement. In

[14], Lettvin and his colleagues create a CRT display of a regular array of hexagons of

random colors. Five grey hexagons sit equidistant from each other, one close to each

of the four corners of the display, and one in the center. When the hexagons are put

in order according to color, so that, for example, red intensity values increase from

left to right, and green values increase from right to left, the fixed grey hexagons no

longer look grey, but take on different colors depending on the colors of the hexagons

in their immediate surrounds. Thus, the hexagon-Mondrian demonstrations imply

that the color of an object depends on a weighted local average of the colors in its

surround, not on an unweighted global average.

Shapley (pers. comm.), following the tradition established by Hering [411, ar-

gues that lightness and color constancy depend solely on local contrast mechanisms.
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Shapley claims that retinal lateral inhibition and gain control mechanisms mediate

the calculation of the average local contrast at the border of an object and its back-

ground, and that the average local contrast determines lightness. Gilchrist et. al.

[34] and Arend [4] argue on the basis of convincing psychophysical results that local

contrast effects are not nearly strong enough to account for color constancy.

These results, together with many others [381, illustrate that although there is

almost certainly an underlying connection between color contrast and color constancy,

its details are still unknown.

2.2.1 Segmentation and Filling-In

Koffka [54] emphasized that simultaneous color contrast depends not merely on

the absolute reflectances and shapes of parts of an image but also on the way the

parts are segmented into wholes. The Koffka Ring is an image of a uniform grey

annulus placed against a bipartite rectangular background, one half red, the other

half green. When the midline dividing the background is drawn across the annulus,

the annulus splits into two pieces. The semi-annulus on the red half appears greenish,

and the semi-annulus on green appears reddish. If the midline is erased, the annulus

appears uniformly grey once more. The effect is stronger for an achromatic ring. A

grey annulus against a rectangular background, one half black and one half white (see

Figure 2.1), more strikingly splits into two semi-annuli, one light and one dark, when

the midline is drawn across it (see Figure 2.2).

The Koffka Ring shows that the presence of a luminance edge between regions

influences the perception of color or lightness within the regions. Koffka interpreted

his illusion as evidence for a Gestaltist theory of form perception: the "forces of

unit formation" are strong enough to hold the annulus together when it is not split

by the midline, but not when it is. In more modem terms, the Koffka Ring might

be said to show that surfaces are segmented into regions by luminance edges before

their attributes of lightness or color are computed. Recent experiments by Gilchrist

[33] show that lightness is computed separately for surfaces in separate depth planes,
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Figure 2.1: The Koffka Ring: a uniform grey annulus against bipartite background,
here with no midline drawn through the annulus. Annulus appears to be uniform
grey throughout.
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Figure 2.2: With the midline drawn down the center of the annulus, the left half
appears lighter than the right.
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supporting the idea that segmentation of the image based on form and depth cues

precedes lightness or color computation and therefore precedes segmentation based

on lightness or color cues.

Yarbus [113] illustrated that in some sense, lightness or color is computed at edges

and spreads across, or "fills in", regions within edges. In his classic stabilized-edge

experiment, two red disks are set against a bipartite background, the left-hand disk

on white, the right-hand disk on black. When the edge between the backgrounds is

stabilized, and therefore "disappears," the left-hand disk turns dark red, the right-

hand disk light red. Crane and Piantinada [17] demonstrate a similar filling-in effect

that results in the striking perception of reddish green.

Gilchrist, et. al. [34] demonstrate two crucial features of the importance of edges

for lightness perception: (1) distant edges, not just those at the boundary of the re-

gion in question, influence the region's lightness; and (2) reflectance and illumination

edges influence lightness perception in different ways. Gilchrist et. al. create a dis-

play which, under one condition, appears to be the traditional simultaneous contrast

display: a bipartite rectangular background, the left half white, the right half black,

with two grey square targets, one on each half. Under this condition, the edge be-

tween the two halves of the background appears to be the edge between two papers of

different reflectances, and the two targets look grey, the left one slightly darker than

the right. Under another condition, the edge between the two background halves

appears to be the edge between the lit and shadowed halves of a single paper with

a uniform reflectance. The left target then looks black and the right looks white,

although the luminance ratios across all the edges in the display have not changed.

The Gilchrist et. al. experiment illustrates the strength of the spatial decomposi-

tion computation in color constancy. Not only slow gradients but also sharp changes

of illumination can be disentangled from reflectance changes. The results also em-

phasize a crucial distinction between color contrast and color constancy: the former

is predominantly a local phenomenon, whereas the latter is global. Blackwell and

Buchsbaum [6], for example, demonstrate that regions greater than two degrees of
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visual field distant from a central patch do not induce contrast effects there.

2.3 Color Vision from a Neurological Perspective

One way to discover how, where and why the human brain produces this variety of

phenomena in seeing color is to examine what goes wrong when the brain's capacity to

see color is impaired. In experimental biology, lesion studies are often fruitful. That

is, often the quickest, although perhaps not the most elegant, way to determine the

function of an identifiable structure is to determine which functions are lost when that

structure is ablated. In humans, brain lesions are not normally made deliberately to

determine function. Yet they do occur often enough to provide data for natural lesion

studies, as the result of natural accidents or as inadvertent byproducts of neurosurgical

attempts to control neurological disease, as in the famous case of the epileptic H.M.

whose amnesia following bilateral temporal lobectomy revealed that certain temporal

lobe structures were essential to memory.

The human color vision pathway extends from the retina, where the three types

of cone respond differentially to different wavelengths of light, to visual association

cortex. Lesions anywhere along this pathway may cause disturbances of color vi-

sion. The most commonly known is retinal color blindness, in which either the long-

or middle- wavelength-sensitive type of cone is missing (dichromatic vision) or its

spectral sensitivity is displaced from normal (anomalous trichromatic vision). The

post-receptoral color vision pathway in the retinally color-blind is generally thought

to be intact although it has not been extensively studied psychophysically in humans

or physiologically in animal models (see, e.g., [86]). The fact that the retinally color-

blind do not have blatant deficits in the phenomena of color vision discussed above

(e.g., color constancy, color contrast, and image segmentation using color) within

the limits defined by their wavelength discrimination abilities, suggests that these

phenomena are indeed mediated by higher-level cortical mechanisms.

Lesion studies have not yet proved this conjecture because they have yet to prove
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conclusively that a cortical center specialized in any way for color can be segregated

from other regions of visual cortex. That is, lesion studies have first to establish the

separability of the color vision pathway from other visual pathways at the cortical

level before attempting to isolate stages in color processing. The problems in doing

the former are at least two: the color vision pathway from retina to cortex appears

particularly vulnerable to damage, so that color vision deficits occur most often in

conjunction with other visual deficits [81); and tightly circumscribed cerebral lesions

are rare. In the case of cerebrovascular accidents, it is almost too much to ask that

if an anatomically distinct cerebral color center exists it will be supplied by a branch

of an artery that may occlude or rupture causing complete damage to the center

without affecting supply to functionally distinct r .s. Largely for these reasons,

evidence for a cortical color center from !esion studies has been controversial. Now,

though, based largely on physiolugical data from monkeys (see Chapter 8), it is widely

accepted that at least for several stagc of vi~ia 1 processing color information is

processed separately from other types of visual information.

Meadows [81] reviews 14 cases of achromatopsia due to cerebral lesions, the earliest

being MacKay and Dunlop's of 1899 [69], the latest one of his own (1974). All but one

of the patients had suffered a cerebrovascular accident; one had undergone trauma

to the occipital region. All complained of a complete or near-complete loss of color

vision, most describing the world as being "black and white" or "grey." The majority

of patients had uni- or bilateral upper quadrant visual field deficits, suggesting that

lesions of the inferior striate cortex or optic radiation were responsible. In three

patients on whom autopsies were done, lesions were found in the fusiform (now called
'occipitotemporal') and/or lingual gyri. This led neurologists of the late nineteenth

century to conclude that there is a human colour center and that it lies in these gyri.

Most of these patients did not undergo detailed testing of visual function. Thus

it is not possible to determine exactly which capacities are subserved by the lesioned

areas or which capacities dependent on intact color vision were compromised. Twelve

out of 14 of the patients also suffered prosopagnosia. But from this, one cannot
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conclude, attractive as the hypothesis might be, that color vision is a prerequisite for

face recognition. The more likely conclusion is that the putative color center destroyed

by infarction of the lingual and fusiform gyri lies close to a distinct area that is crucial

in face recognition and that is also damaged. As both Meadows [81] and Damasio

et. al. [20] note, this is supported by the fact that prosopagnosia and achromatopsia

may occur independently of each other. It is nonetheless interesting to note that

the painter J. I. (discussed below) found that faces were "unidentifiable until they

were close" because they had "lost color and tonal contrast" [100]. His complaints

illustrate that although color may not be the essential cue for object recognition, it

is an important one.

More recently, Damasio et. al. [20] have reported a case of pure hemiachromatop-

sia, which provides the strongest support for the existence of an anatomically distinct

area specialized for color computation. This patient (C.M.) suffered a cerebrovascular

accident that selectively lesioned the lingual and fusiform gyri in his right hemisphere,

leaving him unable to perceive colors in his left visual field. Except for a small sco-

toma in his left upper quadrant, he had no other visual deficits, in particular no

prosopagnosia and no loss of visual acuity.

Damasio et. al. [20], together with other authors, speculate that this lesion-

defined color center may be the human analogue of the monkey area V4, subregions

of which contain cells selectively responsive to color (see Chapter 8). Yet as both

Damasio et. al. and Meadows [81] point out, V4 is differently located in the monkey.

Monkey V4 is on the lateral surface of the occipital lobe in the banks of the lunate

sulcus, superior and lateral to the lingual and fusiform gyri. But since the primary

visual cortex in humans is medial relative to monkey V1, it may be that the analogue

of V4 is similarly translated.

Heywood et. al. [42] emphasize that monkey V4 appears to be responsible for as-

pects of form as well as color perception. They report a case of partial achromatopsia

in a patient (C. B.) who suffered occipital lobe damage in an auto accident. C.B.'s

color perception is "grossly impaired," as evidenced by grossly abnormal scores on
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the Farnsworth-Munsell 100-Hue test, although not completely destroyed. (He can

discriminate between widely but not narrowly separated hues.) As in Damasio's pa-

tient, C.B.'s form perception, as evidenced by normal performance on shape and line

orientation discrimination tests, is intact. Each patient's pattern of deficits supports

the notion of separability of form and color perception at a high level in the visual

system. Yet because the site of C.B.'s lesion is not precisely known, it is difficult to

draw specific conclusions about the human analogue of V4.

Although almost all achromatopsic patients complain that the normally vivid col-

ors of objects are usurped by black, white and shades of grey, which colors turn white

and which turn black vary from case to case. Sacks et. al. report the case of the
"color-blind painter," a successful abstract artist (J. I.) who after suffering a concus-

sion in a minor car accident lost all color vision. To him, objects suddenly seemed not

only grey but also "disgusting." Curiously, though, while saturated reds and greens

appeared black, saturated blues appeared pale, almost white. This is odd, because if

the luminance pathways remained perfectly intact greens and reds should have been

lighter than blues, since the short-wavelength-sensitive cone contributes little to the

luminance channel. In other respects, J. I.'s luminance channel appeared relatively

intact, in that he ordered other colors on a luminance scale that was accurate but

much more coarsely divided than normal. This anomaly suggests that the luminance

channel interacts with the chrominance channels beyond the retina, and that determi-

nations of brightness and whiteness hinge on high-level cortical mechanisms. Perhaps

in J.I. the blue-yellow chrominance channel was less or more damaged than the red-

green channel. One must postulate some such differential damage to explain why

other achromatopsics see different blacks and white. Like J. I., two of the patients

Meadows reviews perceived "relatively unsaturated" blues and greens as "bright,"

and dark browns, reds and blues as black. Unlike J.I., one saw blues as dark and reds

as light. Another saw blues and greens as brown or grey.

For at least some achromatopsics, the loss of color vision is not merely an in-

convenience, a minor deprivation in an otherwise luxurious visual world. For some
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patients, it seriously hampers object recognition, at least for those objects, as Pallis's

patient explained, for which "colour [was] the main clue as to what it [was]" [89].

This patient said "... when I open a jar I never know if I'll find jam or pickles in it."

Similarly, J.I. found that he would mistake "mustard for mayonnaise" or "ketchup

for jam" (1001.
Perhaps the most interesting and simultaneously the most anecdotal lesion stud-

ies bearing on the why and how of cortical color mechanisms are those described

by Critchley [19]. He relates provocative reports that support the notion that the

filling-in of color occurs separately from the determination of luminance and depth

boundaries. He describes the phenomenon of "illusory visual spread" that results from

some (unspecified) cerebral diseases. ".. Colours may seem to extend far beyond the

confines of the object to which they belong, especially when a bold pattern of vivid

contrasting colours is concerned. Thus the design of a frock may appear to spread

over the face and bare arms of the wearer" [19]. He describes another, similar phe-

nomenon in which colours stray outside normal object boundaries, sometimes settling

in a different depth plane from the object to which they normally belong. "As colours

no longer appear to be integral to the objects in question, they may seem to occupy

a plane somewhere between the subject and the object. When the patient wishes

to touch something, he has an odd impression as though he had to plunge his hand

through a translucent sheet" [19]. Critchley writes, "Hoff ... has stated that with

occipital lobe stimulation, colours may be seem to be 'loosened' from the confines of

their objects so as to constitute a 'separation of colour from the object,' sometimes in

the form of coloured balls [19]." These reports suggest that color cannot be the only

cue used to segment an image into distinct materials, as objects still appear distinct

even when their colors are detached.

So far, there has been no report of a neurological deficit in which hue discrimi-

nation is preserved but color constancy is lost, nor of a psychophysical study of an

achromatopsic in which, for example, quantitative measurements are made of con-

trast sensitivity functions at varying temporal frequencies and with varying amounts

28



of chrominance information. The latter study might reveal a great deal about the

mechanisms in the lesioned areas and whether they have the characteristics of the
"parvo" pathway described in monkeys (see e.g. [25, 26, 68]). Nonetheless, lesion

studies do provide both crude support for the modularity of human vision, and a

glimpse of the way color vision interacts with other modules.
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Chapter 3

Computational Models of Color
Vision

The computation of color is a prime example of the difficult problems of inverse op-

tics. Inverse optics is the science of recovering unique three-dimensional scenes from

ambiguous two-dimensional images. In the computation of color, the goal is to recover

the invariant spectral reflectance properties of object surfaces from the image irradi-

ance signal. In the image irradiance equation, both the spatial and spectral variations

of surface spectral reflectance are entangled with those of the surface illumination.

Just as one spatial dimension is lost in the projection of a three-dimensional scene

onto a two-dimensional imaging plane, information about the surface reflectance is

irrevocably lost in the ambiguous image irradiance signal. Most of the computational

approaches to the problem discussed here simplify the image irradiance equation by

assuming that all surfaces are perfectly matte and that each is illuminated by only

one light source. These assumptions reduce the image irradiance equation to the

product of two terms: surface reflectance and illumination. The goal of most color

algorithms is to separate these two terms.

The problem of separating surface reflectance from illumination itself has two

parts: spatial decomposition and spectral normalization. The first is the problem

of disentangling the spatial variations of the two components; the second, that of

disentangling their spectral variations. Lightness algorithms specifically address the
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first problem by exploiting natural constraints on the spatial form of reflectance and

illumination. The lightness algorithms and segmentation algorithms discussed here

employ one of two methods to perform spectral normalization: averaging to grey

or normalizing to white. Spectral basis algorithms rely on similar methods. The

differences between algorithms lie largely in the assumptions they make about the

physical properties of surfaces and illuminants and in the assumptions they rely on

to achieve spectral normalization.

The simplified image irradiance equation introduced here is not adequate for many

materials in the natural world, which reflect light with significant specular compo-

nents. The first two sections of this chapter discuss how the simplified image irra-

diance equation may be derived from its more complicated correct form. The more

complicated form is used as the basis for the class of algorithms that achieve spec-

tral normalization by recovering the color of the illuminant using information from

specular reflections, characterized by the chromaticity convergence algorithm.

3.1 The Image Irradiance Equation

The starting-point for computational models of color vision is the image irradiance

equation. This describes the relationship between the light falling on the image

plane (the image irradiance) and the physical properties of the scene being imaged.

In general, the image irradiance due to one surface in the scene is proportional to

the product of the amount of light falling on the surface (the surface irradiance or

illumination) and the proportion of incident light that the surface reflects (the surface

reflectance).' The surface spectral reflectance is the surface reflectance as a function of

wavelength. This is an invariant property of a surface, dependent only on the material

from which it is made; it stays constant under changes in illumination. Thus, in order

to compute constant colors, some measure of surface spectral reflectance must be
1lmage irradiance (the light falling onto the image) is proportional to surface radiance (the light

exiting from the surface, by factors dependent on the imaging geometry, as discussed in slightly more
detail in the following section. Irradiance is specified in units of Watts per meter-squared (W/m 2 ).
Radiance is specified in units of Watts per steradian per meter-squared.
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extracted from the image irradiance. The fact that our perception of constant colors

correlates strongly with certain measures of surface spectral reflectance suggests that

the human visual system performs such a computation.

Most computational models use a simplified form of the image irradiance equation

that relies on several restrictive assumptions about the world being imaged. The

equation may be written:

I(A, r;) = R(A, r0, v, n, s)E*(A, n, s), (3.1)

where A is wavelength; r, is the spatial coordinate in the image onto which r., the

surface coordinate, projects; n is the unit vector in the direction of the surface normal

at point r,; v is the unit vector in the direction of the viewer; and s is the unit vector

in the direction of the light source. E*(A, n, s) is the surface illumination2 on point

rs, and R(A, r., v, n, s) is the surface reflectivity function[46, 45] (see Figure 3.1).

This equation assumes that the way in which surfaces reflect light is governed by a

single reflectivity function. In particular, most computational models further simplify

the equation by separating the reflectivity function into two independent spatial and

spectral terms:

R(A, r., v, n, s) = p(A, r.)F(v, n, s)

where p(A, ro), here called surface reflectance or reflectance, is the component of the

reflectivity function that depends only on the material properties of the surface 3; and

F(v, n, s) is the component that depends on the viewing geometry. p(A, r.) is written

as a function of the spatial coordinate of the surface to illustrate that the material of

which it is made may vary across space.

This separation is valid for surfaces that reflect light equally in all directions, that

is, for perfectly matte surfaces. Such surfaces are said to be modified Lambertian
2The surface illumination, in general, includes the direct source illumination and the diffusely

reflected illumination from all surfaces in the scene. Here the mutual surface reflections will be
ignored.

3Often p(A,r.) is called the albedo.
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surfaces. (Ideal Lambertian reflection is not only diffuse but also white.) The light

reflected from any one point on a Lambertian surface has the same spectral compo-

sition and radiance in each direction. This implies that F(v, n, s) is a constant, or,

in other words, that the surface reflectance function is independent of the angle at

which light enters or exits the surface. That is, the surface reflectance depends solely

on the material of which the surface is made and not on its orientation, shape, or

position relative to the light source.

For many materials, F(v, n, s) is not constant but varies with v and n, as dis-

cussed in Section 3.2. For these materials, the factors in Equation 3.1 may be

regrouped by defining the effective irradiance E(A, v, n, s), where E(A, v, n, s) =

F(v, n, s)E*(A, n, s). The effective irradiance is the surface irradiance modified by

Lbe orientation, shape, and location of the reflecting surface and by the geometry of

the imaging system.

For many types of materials, then, Equation 3.1 may be simplified to:

I(A,ri) = p(, r.)E(A, v, n, s). (3.2)

The effective irradiance is the intensity that the surface would reflect if it were

painted perfect white, that is, if p(A,r,) = 1. If the surface were also normal to

both the source and viewer direction, that is, if F(v, n, s) = 1, then the effective

irradiance would equal the surface irradiance. If the surface irradiance only were

white and F(v, n, s) = 1, then the reflected radiance would be directly proportional

to the surface reflectance everywhere by the same factor.

In most biological and artificial visual systems, the image irradiance is captured

by an array of light sensors. The signal transmitted by a sensor is a function of the

light intensity integrated over the sensor's spectral sensitivity range. For the cones

in the human retina, this function is nonlinear and is commonly approximated by a

logarithm as shown: "

'Baylor, et.al (5] have shown that although the cone response is logarithmic with respect to large
changes in retinal irradiance, it is linear within small operating ranges.
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SL(r 1) = logj a(A)p(A, rs)E(A, v, n, s)dA, (3.3)

where v labels the type of receptor (the long-, middle- or short- wavelength-sensitive

cone; see Figure 1.1), SL(r,) is the signal sent by the sensor and a"(A) is its spectral

sensitivity function.

From Equation 3.3, it is apparent that the computational problem of color con-

stancy, to extract surface spectral reflectance from image irradiance, is undercon-

strained. At every location in the image, there are two unknown variables - surface

reflectance and illumination - and only one known - the image irradiance. To solve

it, one must find constraints on the behavior of the reflectance and illumination that

enable them to be disentanuied.

The problem may - stated in a more general way for the human visual system,

without assuming tnat its goal is explicitly to recover surface spectral reflectance. The

problem is: transform the triplet of cone activities S' at each location on the retina

into a t-,piet of values Ck that remain constant for a given surface under changes in

illumination.

3.2 Reflectance Models

Equation 3.2 makes the implicit assumption that a surface reflects only one type of

light. In fact, the light that a surface reflects is, in general, composed of two types:

body reflection, light whose color is determined solely by the material properties of the

surface; and interface reflection, which for certain materials, takes on the illuminant

color (as termed by Shafer [102]). Body reflection, as its name implies, emerges

from the body of the material and is diffuse in direction. Interface reflection arises

from the air-surface interface and, for smooth surfaces, is concentrated in a single

direction. (For smooth surfaces, the interface reflection is called specular.) Each type

of reflection is governed by a distinct reflectivity function. In other words, the term

p(A, r)F(v, n, a) in equation 3.1 should strictly be written as the sum of two terms,
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each with a separate dependence on wavelength and direction. Equation 3.2, which

serves as the starting-point for many of the computational models reviewed here, is

based on a modified Lambertian reflectance model in which the interface reflection

term is neglected; that is, surfaces are assumed to be perfectly diffusely reflecting,

with no specularities.

The Lambertian reflectance model vastly simplifies reflection in the real world,

which consists of a variety of materials, illuminants and geometries. Several authors

(Healey and Binford [391, Lee [63, 62], and Shafer [102]) make a useful distinction

between the reflectance properties of two types of material. An optically homogeneous

material, such as a metal or crystal, consists of a single opaque material. The light

it reflects is dominated by interface reflection. The energy of the reflected light is a

function both of the complex refractive index of the material, which is itself a function

of wavelength, and of the imaging geometry. Thus, for homogeneous materials, the

color of the interface reflection is not the same as the illuminant color, nor is it

constant under changing illumination conditions.

An optically inhomogeneous material, such as a paint or plastic, consists of a

carrier material, which is largely transparent, and of pigment particles imbedded in

the carrier. The light it reflects is dominated by body reflection, which emerges in

all directions after being refracted into the carrier, where it is scattered and absorbed

by the pigment particles. For inhomogeneous materials, the index of refraction of

the carrier is virtually constant with respect to wavelength, so the interface reflection

takes on the color of the illuminant. The color of the body reflection, on the other

hand, is determined solely by the internal pigment particles - thus, it is to the body

reflection that we attribute the constant color of the object.

Many computer graphics models assume a reflectance model based on the prop-

erties of optically inhomogeneous materials (see [62]): diffuse reflections are assigned

the color of the object, while specular reflections take on the color of the light source.

Lee et. al. [62] term this the neutral interface reflection (NIR) model.

Lee et. al.[62] derive a more exact form of equation 3.2 for inhomogeneous materi-
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als, roughly as follows. The precise equation relating the surface irradiance E(A, n, s)

to the image irradiance I(A, ri) is:

I(A, ri) =a Jf ff(A, v, n, s)E(A, n, s)cossdw, (3.4)

where 0. is the angle between the surface normal n and the source direction s, and

wS is the solid angle in the direction s. f(A, v, n, s) is the bidirectional spectral

reflectance distribution function. Formally, f is defined as the ratio of the reflected

radiance in the viewing direction v to the incident irradiance in the source direction

s. Integrating the product of f over all solid angles of incidence of the source gives

the total reflected radiance of the surface in the direction v. The factor a governs the

conversion of surface radiance to image irradiance. It is dependent on parameters of

the imaging system: the focal length, diameter of the entrance pupil, and the off-axis

angle, the latter of which varies with position in the image.

Under the assumption that there is a single light source (see Section 6.1), the

surface irradiance E may be separated into the product of two terms:

E(A,n,s) = E(A)c(n,s). (3.5)

That is, the single source assumption says that the spatial dependence of the surface

irradiance is the same for each wavelength. Under the assumption that the pigment

particles are uniformly distributed throughout the carrier material and none protrude

through the surface (102], the function f may also be decomposed into distinct spectral

and spatial terms:

f(A, v, n, s) = pb(A)g(v, n, s) + p.(A)h(v, n, s). (3.6)

Equation 3.4 then becomes:

I(A,,) =
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crE(A) [Pb(A) Js g(v, n, s)F(n, s)cosO~dws7 + p,(A) J. h(v, n, s)F(n, s)cos9sdw.]
(3.7)

Setting

Fb(v, n, s) = a Js g(v, n, s)e(n, s)cosOsdws

and

F,(v, n, s) = a J h(v, n, s)e(n, s)coss.dw.s,

equation 3.7 simplifies to the form of equation 3.2, with the two components of the

reflectivity function made explicit:

I(A, r,) = E(A) [pb(A, r.)Fb(v, n, s) + p.(A, r.)F(v, n, s)]. (3.8)

Each component of the image irradiance may be split into two terms: an effective

illumination term (which absorbs different geometric factors for each type of reflec-

tion) and a reflectance term. Here pb is the body spectral reflectance factor (surface

reflectance or reflectance, as defined earlier) and p, the specular spectral reflectance

factor.- (The reflectance factor technically is defined as the ratio of reflected light

in a given direction to that reflected in the same direction by a perfectly reflecting

diffuser identically illuminated. It differs from the reflectance factor as defined here

by a factor of ir.)

Healey and Binford [39] illustrate how the NIR model may be derived from Equa-

tion 3.8 for certain types of inhomogeneous materials. For these materials, the re-

fractive index is constant across the spectrum,

p.(A) = k. (3.9)

or, in other words, the specular reflection is neutral, constant with respect to wave-

length. For materials with perfectly smooth surfaces,

'The precise form of g depends not only on the vectors n, a, v, and h, but also on the fraction
of microfacets at point p,, oriented in the direction of h and on a geometrical attenuation factor
accounting for masking between facets.
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F,(v,n,s) = F,(s). (3.10)

That is, the interface reflection is concentrated in the perfect specular direction, which

depends only on s. Thus, for a smooth-surfaced inhomogeneous material, the surface

reflection will be concentrated in one direction and will take on the illuminant color.

The body reflectance term also simplifies under certain assumptions. Healey and

Binford [39] use the Kubelka-Munk theory for reflection from inhomogeneous ma-

terials to show that body reflection is roughly constant with respect to the source

direction, and that therefore Fb is in general a function only of v and n. (This result

also justifies the separation of the body reflection into spatial and spectral terms.)

For an ideally diffusely reflecting surface, Fb is constant with respect to v, s and n.

Lee et. al. [62] tested the validity of these assumptions for certain real materials

by measuring the spectral power distribution of reflected light from a variety of in-

homogeneous materials at several viewing angles, relative to the reflected light from

an ideal diffuser (pressed barium sulphate powder) identically illuminated. They find

that for many materials - plants, paints, oils, and plastics - but not for paper or ce-

ramics, the spectral po~er distribution changes in magnitude but not in shape. That

is, the spectral power distribution curves are linearly related to one another at the

different viewing angles, or, the brightness but not the hue of body reflection from

inhomogeneous materials changes with viewing direction. This result indicates that

for these materials, pb(A) is indeed independent of the imaging geometry, and that

it is separable from Fb. A separate plot of the chromaticities of the reflected light

at different angles indicates that the NIR model holds even for those materials (e.g.,

yellow paper) for which the spectral power distribution changes with viewing angle.

This can occur because the chromaticities are the result of integrating the reflected

light over the broad range of a sensor signal. Thus, in the integral, changes in spectral

power distribution with viewing angle at one wavelength may be canceled by opposite

changes at another wavelength.

In summary, the modified Lambertian reflectance model used in equation 3.2 is
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accurate for body reflection from inhomogeneous materials with little or no specular

component under a single light source. Color algorithms based on it can be expected

to fail where the image irradiance signal is dominated by interface reflection. Equation

3.8 is more generally correct for inhomogeneous materials with or without significant

specularities and can be simplified to the NIR model for many materials, but it also

relies on the single source assumption. Neither equation accurately describes light

reflection from homogeneous materials such as metals, and neither takes into account

mutual reflections between objects.

3.3 Lightness Algorithms

Lightness algorithms [57, 61, 58, 43, 7, 50], pioneered by Land, assume that the color

of an object can be specified by its lightness, or relative surface reflectance, in each

of three independent chromatic channels, and that lightness is computed in the same

way in each channel. (Lightness is defined by Evans [30] as "the visually apparent

reflectance of a surface under a given set of conditions." Lightness algorithms attempt

to recover an estimate of the "visually apparent" integrated reflectance in each of three

distinct chromatic channels. The channels are usually assumed to be represented

by the photoreceptor spectral sensitivities.) Computing color is thereby reduced to

extracting surface reflectance from the image irradiance in a single chromatic channel.

The computation is simplified by several assumptions. The first is that there

are no specular reflections. p(A, r,) is therefore the body reflectance factor. The

second is that the viewing direction and surface normal are everywhere the same (true

for a perfectly flat two-dimensional surface always viewed from the perpendicular

angle). The effective irradiance in equation 3.2 therefore becomes a function only

of wavelength and of source direction, which is written here as a dependence on

the surface coordinate ra. That is, E(A)Fb(v, n, s) = E(A, r.). The third is that

the light sensor response may be written as the logarithm of the prtluct of terms

approximating illumination and reflectance and may thereby be cvaverted to a sum
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of logarithms. The monochromatic image irradiance equation therefore becomes:

S'(A,r) = log a'(A)p(A, r.) +logE(A,r.). .11)

For the signal integrated over the sensor sensitivity range, the product is not trans-

formed so easily into a sum. It is clear that if a'(A) were a delta function, 6(A - A,)

(that is, if the sensor range were a very narrow band), or if the illumination consisted

of very narrow-band lights, each falling in the range of only one sensor, Equation

(3.3) would become:

S (r) = log [p(r)E"(r)] (3.12)

where pv(r) is the surface reflectance and E (r) is the effective irradiance integrated

over the narrow vth spectral band (dropping the subscripts on the spatial coordinates

r). For human photoreceptors and most filters and cameras used in artificial visual

systems, the spectral sensitivities are not delta functions, so Equation (3.12) does not

immediately follow. Other descriptions of lightness algorithms have neglected this

problem.

The desired decomposition may be obtained exactly by first writing p and E

as weighted sums of a fixed set of basis functions, chosen to describe fully most

naturally-occurring illuminants and surface albedos and to satisfy certain constraints

(see Section 3.4). By making appropriate transformations, the sensor signals may then

also be written in terms of the basis functions, which therefore define new lightness

channels, as illustrated in Appendix A. The image irradiance equation becomes

S1(r) = E'(r)p'(r) (3.13)

where the index i labels the type of new lightness channel formed by a linear combi-

nation of the original sensor channels. Taking logs of both sides yields:

P = (r) + (r), (3.14)

41



where '(r) = log S'(r), and so forth.

This derivation relies on several assumptions, the most restrictive being that the

basis functions into which the illuminant and reflectance are decomposed form a

bi-orthogonal set with respect to integration with the original sensor channels. The

visual system might nonetheless perform a similar, less exact transformation, of which

the biological opponent-color channels, for example, may be the result.

Yet a more general way to achieve the decomposition is given by Lee et. al.

[62]. This method highlights the fact that, given a finite number of sensors, each

with a broad spectral sensitivity function, the visual system can recover only an

approximation to surface reflectance. This fact is central to the problem of color

constancy.

Under the assumptions and definitions given in the preceding section, the image

irradiance equation given in equation 3.3 becomes:

S"(r) = log [Fb(vn, s) f a'(-)pb, r)E(A, r)dA] (3.15)

where Fb(v,n,s) is defined as in equation 3.8 and E(A,r)Fb(v,n,s) is the effective

irradiance. Defining the integrated reflectance p"(r) as:

p(r) f p(Ar)E(Ar)a"(A)dA (3.16)
f E(A, r)a"(A)dA

and the integrated effective irradiance E' as:

EV(r) = Fb(v, n,s) f E(A,r)a-(A)dA, (3.17)

Equation 3.15 becomes

S(r) = log[p(r)Ea(r)], (3.18)

which may be decomposed into a sum of logs as above. The integrated reflectance is

no longer perfectly constant under changes in the illumination, except in the limiting

cases of narrow-band sensor spectral sensitivities or illuminants. Thus, even if the
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visual system could recover p' exactly, it would demonstrate only approximate color

constancy, unless p' is derived by the basis transformation in Appendix A.

3.3.1 The Lightness Problem

The assumption underlying the use of lightness algorithms in color computation

[43, 7, 50] [and Crick, pers. comm.] is that Equation (3.14) may be solved for

p'(r) independently and identically for each of the three ch-omatic channels, and

the resulting triplet of lightness values specifies color. Thus at each location in the

sensor array, there are three equations and six unknowns, so the problem is under-

constrained. In the absence of direct measurements of either the effective irradiance

or the surface reflectance, physical constraints must be imposed in order to solve for

the unknowns.

The lightness problem may be broken down in terms of two sub-problems of color

computation, spatial decomposition of the intensity signal and spectral normalization

of the surface reflectance and the effective irradiance.

Spatial Decomposition

The first step in lightness algorithms is to split the intensity signal into its two com-

ponents at each spatial location - spatial decomposition. This step is performed by

spatial differentiation of the intensity signal under the following assumptions:

Lightness Assumption 1: The scene is a two-dimensional Mondrian, that is, a

flat surface covered with irregularly shaped patches of uniform surface reflectance.

Therefore, p'(r) is uniform within patches, but changes sharply at edges between

patches.

Lightness Assumption 2: The effective irradiance varies slowly and smoothly

across the entire scene and is everywhere independent of the viewer's position. E(A, n, s)

may therefore be written as a function of A and r. only, as in Equation 3.11.

Under these constraints, the two components are disentangled by:

(1) Differentiating the sensor signal, Si(r), over space.
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(2) Thresholding the derivative, d [Si(r)], to eliminate small values that are due

to smooth changes in the effective irradiance and to retain large values that are due

to abrupt changes in the surface reflectance at borders between patches.

(3) Integrating the thresholded derivative, Td [S'(r)] over space to recover surface

reflectance. (Because only the large changes due to reflectance remain in d[S(r)] after

thresholding, Td[S(r)] is approximately equal to d p(r)].)

In summary, the first two lightness assumptions ensure that spatial changes in

the effective irradiance may be disentangled from spatial changes in the spectral

reflectance function of a surface, under the given conditions.

Spectral Normalization

Spatial decomposition does not recover surface reflectance exactly because the con-

stant of integration, representing the absolute scale of p'(r) relative to S'(r), is lost in

the final step and must be reset. (Furthermore, as discussed below, p'(r) is itself only

an estimate of the integrated surface reflectance in channel i. The threshold operation

is also inherently inaccurate, unless it is made flexible enough to recognize variations

in the size of irradiance and surface reflectance spatial changes.) The result of the

computation, lightness, is therefore at most only proportional to surface reflectance.

We may write [ki]-' [TS(r)]' = L'(r) = c(r)pi(r) where [TS(r)]' is the result of

integration of the thresholded intensity before the constant of integration, [ki]- 1 has

been set, L' is the lightness in the ith wavelength band, and c'(r) is a multiplicative

factor that may vary across space.

The value of k' depends on the spectral normalization that the algorithm performs.

Most versions of the retinex algorithm and, by extension, other lightness algorithms

that do not explicitly address the normalization problem, impose the final constraint:

Lightness Assumption 3: The average surface reflectance of each scene in each

wavelength band is the same: grey, or the average of the lightest and darkest naturally

occurring surface reflectance values.

This assumption, the "grey-world" assumption, appears in similar guise in other
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theories.6 Lightness algorithms that rely on it are here said to 'average to grey.'

ki may then be set to the average value of the thresholded intensity of the scene,

so that the computed lightness of a patch approximately equals its surface reflectance

relative to the average reflectance of its surround. If lightness assumption 3 holds,

then the lightness of a patch is an accurate and invariant measure of its surface

reflectance. The triplet of lightness values in the three wavelength channels then

defines the color of a patch.

Lightness Assumption 3 implies that any change of scale in S is always inter-

preted as a change of scale in E. To illustrate, consider a test patch against a

background of random colors. Lightness algorithms compute the integrated effective

irradiance on the scene, Eb(r), by dividing S'(r) by the lightness LV(r): Eb(r) =

E(r)pi(r)/ci(r)pi(r) = EP(r)/ci(r). If Ei(r) is increased, k(r) and [TI]'(r) are each

increased by the same factor and the computed lightness of the test patch does not

change. Effectively, the average surface reflectance in the ith-type channel is auto-

matically reset to grey. E' (r) is increased by the same factor as Ei(r), so the spectral

skew is correctly interpreted. The closeness of Ec to E depends on the value of ci(r),

which depends partly on the value of ki and which may vary across space if, for ex-

ample, a spatial gradient of surface reflectance has been discarded by the threshold

operator.

Alternatively, if the background reflectances are skewed toward one part of the

spectrum, the computed lightness of the test patch changes, but the spectral skew

in the intensity signal is incorrectly interpreted as a skew in E'(r): unless c'(r) is

skewed in the same way as cd(r), Eb/Eb # E/E. That is, lightness algorithms will
'see' a dull red patch against a range of green patches as lighter than when against

a range of red patches under the same illumination, and will interpret the skew

towards green as a lack of red in the illuminant. The integrated effective irradiance

'Evans was one of the first to formulate it. R.W.G. Hunt[49] (p. 294) quotes Evans: "The more
pleasing effect is often produced in colour prints if they are so made that instead of the colour balance
being correct, in which grey is printed as grey, it is so adjusted that the whole picture integrates to
grey." Quote attributed to R. M. Evans, U. S. Patent 2571697, 1946.
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is correctly recovered only if the spatial variation and the average of the integrated

surface reflectance is the same in each channel (i.e., k' = ki for all i,j).

In summary, the third lightness assumption provides a normalization scheme that

will compensate for temporal changes in the spectral energy distribution of the illumi-

nant on a given scene but cannot distinguish such changes from skews in reflectance

distributions between scenes.

The original retinex algorithm (performed by a hypothetical neural system involv-

ing elements of both retina and cortex) [61] performs the step of spatial decomposition

by taking the difference in S(r) between adjacent points in many pairs along many

paths radiating from ro, the point at which lightness is to be computed. The differ-

ences are thresholded and summed for each path, giving roughly the ratio between

the reflectances at the start and end points, p(ro) and p(r,). Spectral normalization

is performed by averaging the ratios over all end points to give roughly the ratio

between p(ro) and p(r), the average reflectance of the scene (see Section 4.1.1).

Other versions of the retinex algorithm use a different value for k. They assume

not that the average surface reflectance in each channel is grey, but that the highest

surface reflectance in each channel is white. That is, such algorithms assume that

the brightest patch in each channel reflects all incident light in that channel. Vc may

then be set to the intensity of the brightest patch in the ith channel. These methods

are here said to 'normalize to white.'

3.3.2 Von Kries Adaptation

The spectral normalization methods that lightness algorithms employ are forms of

Von Kries adaptation, as Worthey [112] observes. In Von Kries adaptation, long con-

sidered to be one of the primary mechanisms underlying color constancy, the receptor

sensitivities av(A) are scaled by normalizing factors that vary with the illumination

in order to keep perceived color constant. In the notation introduced in section 3.1,

the Von Kries adaptation model says that under a change in illumination from E,(A)

to E,2(A), the receptor sensitivities are scaled
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so that

where the Ck are the constant color values into which the receptor responses S" are

transformed. For example, let C" = SV. Then Von Kries adaptation requires:

k' log [a(A)p(A,r)E(A)dA] = kRlog Ja"(A)p(A, r)E(Ad]

Averaging to grey achieves exactly this, by setting (k)-1 to the average of S1

over the scene. Normalizing to white sets (k") -1 to the highest value of S" in the

scene. In the first case, kSv will stay roughly constant provided that the average

surface reflectance is the same for every scene, and in the second case, k'S" will stay

roughly constant provided that the highest surface reflectance in the vth channel is

the same in each scene.

3.3.3 Predictions and Tests

Land demonstrates that color perception in a Mondrian world correlates with the

triplet of lightness values as computed by the retinex algorithm with averaging to

grey. As Land himself is careful to note, his demonstration does not show that

the Mondrian colors stay constant under changing illumination, only that they are

the same as those predicted by the retinex algorithm. He even emphasizes that the

lightness values recovered by the retinex algorithm may have an arbitrary relationship

to the physically correct surface spectral reflectance function!' Neither do Land's

'Land illustrates the arbitrary relationship between lightness and reflectance with a photograph of
a Mondrian under a simple illumination gradient: although the surface reflectance of a photographed
patch is a product of the Mondrian patch reflectance and the Mondrian illumination, and so is non-
uniform, it is interpreted as uniform by lightness algorithms. Thi effect follows from the lightness
assumption that all slow changes in the intensity signal are due to the source illumination, and our
perception of the photographed Mondrian indicates that the assumption holds true to some extent.
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demonstrations provide an adequate test of the hypothesis that, in the real world,

color is computed by a retinex-type algorithm. The Mondrian world satisfies perfectly

the three lightness assumptions: reflectance is uniform within patches and changes

sharply between patches; the illumination varies smoothly across the scene; and,

most importantly, the average surface reflectance of the Mondrian is the same from

one viewing to the next, and indeed is roughly the same for all Mondrians with a

sufficiently random collection of colors. If these assumptions are not satisfied in the

real world, lightness algorithms will fail to recover constant colors there. The true

test of lightness algorithms as models of human color computation is, then, to test

whether lightness algorithms and human color perception fail in the same way when

these assumptions are not met.

Spatial Decomposition

The first step is to test the lightness assumptions in the real world. Does the illu-

mination always vary slowly and smoothly across the scene? In a world in which

shape, shading, specularities and shadows confound the effective irradiance, the an-

swer is clearly no. Lightness algorithms will fail to distinguish between sharp changes

in the image irradiance due to object contours, specularities and shadows and those

due to true reflectance edges. This inadequacy of lightness operators is graphically

illustrated in Chapter 5. Segmentation algorithms, introduced in Section 3.5 below,

address this problem by comparing the image irradiance signal in different wavelength

channels across space.

As Land has recently demonstrated using still-life scenes, lightness algorithms may,

nevertheless, approximate human perception even in the three-dimensional world ([59]

and pers. comm.).

Spectral Normalization

But the critical question is one of spectral normalization. Is the grey-world assump-

tion satisfied in most natural images, and, if not, does human color perception vary
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with the average reflectance of the scene? Or does human color perception vary

predictably with the presence or absence of true "whites" in the scene?

Ironically, the object color that the retinex algorithm computes has been criticized

both for varying too much with its surround and for varying too little. That is, the

retinex algorithm has been criticized for being unable to predict either color constancy

or simultaneous color contrast in the context of changing backgrounds. The second

criticism arises from the fact that if the normalizing factor is obtained by averaging

over the entire scene, giving equal weight to areas close and far from the point at

which lightness is computed, the color of a grey patch, say, will not change when

the patches around it are merely shuffled in position. In other words, the local effect

of simultaneous color contrast will disappear in the global computation of constant

colors. But, as Brou et. al.[14] have demonstrated (see Section 2.2), a grey patch will

change color strikingly as its surround is shuffled: it looks grey when surrounded by

a random array of colors, yellowish when surrounded by bluish colors, and pinkish

when surrounded by bluish colors.

The basis of the first criticism is clear: use of the grey-world assumption in light-

ness algorithms predicts that the computed color of a patch will change with the

average reflectance of its surround. Brainard and Wandell [12] computed the change

in lightness triplets for patches in simulated Mondrians with changing composition.

The simulated Mondrians consisted of 9 patches in a 3x3 array whose spectral re-

flectance functions were chosen to match those of certain Munsell chips under CIE

standard daylight D65. Lightness triplets for the relevant patches were computed by

integrating the product of reflectance (using Cohen's basis functions) and illumination

(using Judd and Wyszecki's description of D65) with the Smith-Pokorny estimates of

the human cone spectral sensitivities. As expected, the lightness values for patches

in the top two rows, which were held constant throughout, varied with the changing

composition of the bottom row. To estimate the corresponding change in color, the

lightness triplets were matched to "standard" triplets computed for 462 Munsell chips

arranged in a simulated Mondrian under CIE D65. The matching Munsell value of
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one of the constant patches changed from R8/4 to P6/6 (a relatively large change in

color from red to purple) under certain substitutions in the bottom row. Brainard

and Wandell state that "a human observer viewing these Mondrians on a black back-

ground illuminated by daylight perceives virtually no change in the appearance of the

upper two rows of chips [with changing composition of the bottom row]."

This claim implies that humans do not rely on the grey-world assumption for

spectral normalization. But it requires additional buttressing. To test whether hu-

mans do perform an instantaneous spatial average over the scene, one must restrict

the human observer's view to the Mondrian alone and limit the duration of viewing.

Brainard and Wandell make no mention of the field of view or whether it was carefully

controlled. This leaves open the possibility that the human observer could obtain the

normalizing factor by averaging over a much larger area than the Mondrian alone,

which the simulated lightness algorithm was not allowed to do. The fact that the

view was not limited to a flash in time leaves open the possibility that the average

could be computed over time, as each receptor samples separate locations in space,

increasing the likelihood that the normalizing factor is the same for each location in

the scene and decreasing the effects of simultaneous contrast. Land [59] does, though,

emphasize that color constancy can occur in a "fraction of a second" although he does

not report details of such "flash" demonstrations.

McCann [781 reports a controlled test of the grey world assumption in which

observers viewed Mondrians under diffuse illumination in a box that eliminated all

other objects from view. One paper in each of five different Mondrians was chosen so

that under different illuminants (composed of different ratios of three narrow-band

lights) each of the five different papers emitted the same triplet of radiances in the

three illuminant bands. The surrounds of the Mondrians were constructed so that the

total average radiance from each display under the chosen illuminants was the same.

Although lightness algorithms that relied on the grey-world assumption would now

assign each of the five different papers the same color, human observers perceived the

papers as having different colors, close to what lightness algorithms would calculate if
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the papers appeared under neutral illuminants against unbiased backgrounds. Local

contrast effects were observed but could not account for the extent of deviation from

the grey-world predictions. On the other hand, lightness algorithms that normalize

to white would correctly predict the observer's responses in this experiment.

Both experiments indicate that although the grey world assumption might play a

role in spectral normalization, it cannot be the only responsible factor. In extreme

cases of biased surrounds, the grey world assumption predicts larger color shifts than

those observed. Normalizing to white, which is closely related to the grey world

assumption, might be the more dominant factor, but it has not been fully explored.

Let us assume for the sake of argument that humans do normalize via a form of

Von Kries adaptation, say normalizing to white, or by inversely scaling the sensitivity

in each lightness channel by the highest value of the image irradiance in that channel.

The question then arises: which is the lightness channel scaled? That is, are the

receptor sensitivities themselves scaled or are the responses in channels formed by

transformations of the receptor channels scaled? For example, if the decomposition

of the image irradiance signal into the sum of logs is done as in the appendix, the set

of channels indexed by i in equation 3.14 do not represent the photoreceptor types.

Rather they represent channels formed by a linear combination of the photoreceptor

activities, and these channels correspond to a fixed set of basis functions in terms of

which the source irradiance and surface reflectance are decomposed. McCann et.al.

[79] specifically state that lightness is computed independently in each of the channels

defined by the cone spectral sensitivities. The proposal of a global computation that

occurs independently in each cone channel is, as McCann et.al. write, "a significant

departure from Young's theory, which proposes intercomparisons of long-, middle-

and short-wave receptors at a point."

In fact, specific predictions about the strength of color constancy under certain

illuminant changes may be tested to distinguish between normalization in photorecep-

tor channels versus opponent-color channels. If normalization takes place in opponent-

color channels, one would expect color constancy to be weakest under illuminant
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changes along the blue-yellow axis. The proof of this statement foi ,ile illuminants

used by McCann et. al. [79] is illustrated in Appendix B. McCann et. al. [79] mea-

sure the changes in color of Mondrian patches under varying illumination provided

by three narrow-band liglits. Their results indicate that color constancy is strongest

under shifts along the blue-yellow axis (as demonstrated in detail by Worthey [112]),

suggesting that normalization indeed takes place in the original cone channels.

3.4 Spectral Basis Algorithms

Spectral basis algorithms [15, 13, 70, 101, 115] are founded on the assumption that

most naturally occurring illuminants and reflectances can be described fully by linear

combinations of a small number of fixed basis functions. Spectral basis algorithms

start with a simplified form of the image irradiance equation similar to Equation

3.15 in which the sensor responses are written as a linear function of the sensitivity

integral:

= J a"(A)R-(A)E-(A)dA

Here av(A) is the sensor sensitivity, RZ(A) is the surface reflectivity function, in

which the dependence on the viewing geometry is incorporated into the image spatial

coordinate x, and Ex(A) is the illumination. The central constraint on this equation

is:

* Rx(A) and E-(A) may be written in terms of a fixed set of basis functions:

R'T(A)= £= pFRj(A) and E'(A) = XT eEj(A), where Rj(A) and Ei(A)

are basis functions and p; and e' are spatially varying coefficients.

Additional constraints are then imposed on R'(A) and E-'(A):

* Er(A) is uniform across space (or slowly varying enough that its spatial depen-

dence can be ignored). That is, EZ(A) = E(A) and ef = ci.
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9 R-(A) is implicitly assumed to be invariant under changes in the viewing ge-

ometry, which can only be true for the body reflection component of an ideally

diffusely reflecting surface. In other words, spectral basis algorithms assume a

Lambertian reflection model.

Under these constraints the image irradiance equation becomes:

where T'j(,) = E= irij, and rij, = f a"(A)Rj(A)E(A)dA. The variables have finite

ranges: v = 1,2,...k and j = 1,2, ...n. The matrix T'j(E) depends on the illuminant

and reflectance basis functions, on the sensor spectral sensitivities, which are fixed,

and on the illuminant, which is variable. If TJ(e), which Maloney [70] terms the

light transformation matrix, is known and is nonsingular, then the coefficients pf may

easily be determined by inverting it (see below).

The above equation may be written in vector form:

s' = 'ZJ

where S- = (S" S, SW)-, the photoreceptor responses at the image location x, and
= (pk, p1, pm):, the coefficients of the surface spectral reflectance function at x.

If Tv3(e) is not known, then for each location x there are (m + n) unknowns (n

components of R[= R'(A)] and m components of E[= E(A)]) and k equations. The

unknowns cannot be found unless the equations are further constrained.

Buchsbaum [15] solves for the coefficients pf by imposing a fourth constraint

equivalent to the grey-world assumption. He writes:

9 = Q"'(a)i'

where S is the average sensor response vector over the entire field,

-9 ' bt J a'(A)R-(A)E(A)dA,
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with b the weighting factor for the reflectance at x. F is the vector formed by the

illumination basis function coefficents. Q (a) depends on the average surface spectral

reflectance of the scene, a. That is,

j=1

Buchsbaum then assumes that

Qv'(a) = Q (h) = Er,,.
3=1

where p. is the surface spectral reflectance of a standard material, e.g., a reference

grey. That is, Buchsbaum imposes the following constraint:

* The weighted average of all reflectances in a given scene is known.

Under this final constraint, the basis function coefficients of R and E may be

computed by inverting Qvt(h) to find i'.

(Because Buchsbaum chooses approximations to the normalized sensor spectral

sensitivities as basis functions for both illumination and reflectance, at(A) = R'(A) =

E'(A), and because the assumptions he employs are equivalent to the Retinex as-

sumptions, the coefficients he recovers are directly related to the lightness triplets the

Retinex recovers. But they are not identical because the a'(A) are not an orthogonal

set of basis functions.)

Wandell and Maloney [70, 71] and Yuille [115] find T"j(e), and therefore E, by

a different method. They assume that there is at least one more sensor type than

there are components of R. This obviates the need for the grey-world assumption and

exploits the redundancy in signals carried by different spectral channels at different

image locations. If k = n + 1 then the number of equations obtained by taking a

samples of the scene is (n + 1)s. Assuming that each sample is taken from an area of

different surface spectral reflectance, the number of unknowns is (an + in), since the

illumination is the same at each sampled location. Therefore if a > m, the number

54



of equations exceeds the number of unknowns and, in principle, R and E may be

computed. In practice, since the set of equations is nonlinear, a solution does not

necessarily exist but must be demonstrated. Wandell and Maloney (W-M) find the

m components of E by finding the equation of the geometric surface on which the

samples S" fall, computing T-(e) from E, and computing R with the inverse of

T" (c). Yuille proposes a similar solution.

These algorithms thus eliminate the need for assumptions about the average re-

flectance by comparing the irradiance signals sampled by different sensors at different

image locations. Given only three photoreceptors, these algorithms would recover

constant colors only for materials that can be adequately characterized by two basis

functions.

Note that whereas in lightness algorithms the scale of R relative to E for each indi-

vidual channel cannot be recovered, in spectral basis algorithms only one normalizing

factor is lost.

3.4.1 Predictions and Tests

The W-M algorithm predicts that color constancy will be possible only for (1) scenes in

which there are at least as many distinct surfaces as degrees of freedom in reflectance

and (2) a certain class of reflectances fully describable by only 2 degrees of freedom,

assuming we have only 3 receptor types operative in color vision. If there is such a

class of reflectances then the first prediction says that there must be at least 2 such

distinct surfaces for color constancy to hold. Lightness algorithms that rely on the

grey-world assumption may be tested directly against spectral basis algorithms by

finding a subset of such surfaces that under neutral illumination averages to a color

other than grey. If these surfaces are the only objects in the field of view, then the

W-M algorithm as well as lightness algorithms predict that they will display constant

colors under changing illumination. But if one surface is removed and placed among

another subset of surfaces describable by 2 degrees of freedom, which now averages to

grey under neutral illumination, the W-M algorithm predicts that its color will stay
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the same, whereas the grey-world assumption predicts that it will change.

Spectral basis algorithms have not been tested adequately either as models of

human perception or for machine vision applications. As H.-C. Lee notes (pers.

comm.), a set of basis functions with fixed phase with respect to wavelength cannot

fit all naturally occurring reflectances and illuminants, and, unless the basis functions

are chosen to be orthogonal to each other, will not allow a numerically stable solution.

3.5 Segmentation by Material Boundaries

A third class of algorithms, "segmentation algorithms", (see [98] and Chapter 6) take

on a slightly different goal from lightness and spectral-basis algorithms. The primary

objective of segmentation algorithms is to use color information to segment the scene

into distinct materials. An ancillary objective is to assign to the distinct materials

color labels that are invariant under illumination changes. This goal requires that

segmentation algorithms recover only a coarse description of the surface spectral

reflectance.

Segmentation algorithms thus directly address the first goal of color vision as put

forward in Chapter 1: to distinguish objects from one another in a given scene. To

meet this goal, segmentation algorithms must successfully distinguish image irradi-

ance changes due to object boundaries from those due to, e.g., shadows, specularities

and surface orientation changes, which is exactly the task on which lightness algo-

rithms most often fall. Appropriately, segmentation algorithms rely on one critical

feature of color vision that lightness algorithms ignore: the interaction between image

irradiance signals in different wavelength channels.

The advantage gained over simply computing lightness in independent chromatic

channels becomes clear in the real world. For 2-D Mondrians illuminated by a sin-

gle light source, lightness algorithms successfully identify sharp irradiance changes

with boundaries between different materials. In the real 3-D world, shadows, shad-

ing, specularities and surface orientation changes also cause irradiance changes that
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can be confused with true reflectance boundaries. For example, lightness algorithms

cannot distinguish the sharp decrease from bright to dark across a shadow edge from

a reflectance change between patches of different reflectance. The segmentation al-

gorithm of Rubin and Richards [98], for example, compares the signals in different

chromatic channels and rules out a shadow edge if the irradiance in one channel

decreases sharply as the irradiance in a second channel increases sharply across the

same edge. Segmentation algorithms similarly distinguish other irradiance edges from

those caused by reflectance changes.

Strictly speaking, the existence of a visible shadow implies the existence of more

than one light source. That is, if an object is illuminated by a single, localized light

source, the shadow it casts will be totally dark unless the shadowed area is illumi-

nated by a second source not occluded by the object. Segmentation algorithms must

therefore make three assumptions about the world: (1) there is a single light source

(the single source assumption; see Chapter 6) (2) all surface reflectances average to

grey (the grey-world assumption) and (3) the diffuse interrreflections between object

surfaces therefore average to the color of the light source and serve to illuminate the

shadowed area. The "shadow" source therefore has the same color as the primary

light source.

Note that because of the inherent ambiguity of the irradiance signal, the grey-

world assumption, or its equivalent, is needed by every type of algorithm, whether

it provides normalization on one (as for spectral-basis algorithms) or three (as for

lightness algorithms) spectral channels. In requiring the single source assumption,

segmentation algorithms are more restricted than lightness algorithms, but this is

because the former attempt to solve a different and more difficult problem.

In the following section the algorithm proposed by Rubin and Richards [98] is

briefly discussed. In Chapter 6, a new segmentation algorithm is discussed in detail

and the results of its implementation on real images are illustrated.
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3.5.1 Rubin's and Richards' Algorithm

In Rubin's and Richards' algorithm [98], edges in the three image irradiance signals

(St , Sj and Sk) are first detected by a separate algorithm. Two conditions are then

tested for each edge to determine whether it corresponds to a material boundary.

1. Spectral Crosspoint: Two points (rl) and (r 2) are chosen on opposite sides of

the edge. The crosspoint product is calculated:

[S'(ri) - S'(r 2)][SJ(r1 ) - Sj(r2)]

If the product is negative, that is, the irradiance in one channel increases across

an edge while the irradiance in another channel decreases, a spectral cross-

point is said to occur. Under the single source assumption, neither shadows

nor surface orientation changes on a uniform material can produce a spectral

crosspoint, although specularities can.

2. Ordinality Violation: The regions marked by edges which produce spectral

crosspoints are then characterized by their ordinality, which (liberally inter-

preting the procedure described in [98]) is the doublet of +/- signs given by

calculating the sign of the following ratio for two distinct pairwise combinations

of unlike channels:

[S'(r) - Sj(r)1
sign [S'(ri) + Sj(ri)J

where r, is chosen on one side of the edge and i 9 j. Ordinality is normalized

by scaling each S' and S' by a and 0 respectively, where a and # are selected

so that the median of the ordinality ratio (not its sign), taken over the entire

image, is zero:

median raS'(r4) - S'(r) median [S'(rl) - S0(ri) 0

[fSi(ri) + S'(rl)l(r) IJI [6S(r5) + Sk(ri)J
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This step relies on the grey-world assumption: that for a given scene the aver-

age reflectance in each spectral channel is the same "grey." Ordinality gives a

crude spectral characterization of a material marked by the preceding segmenta-

tion step. When ordinality changes across an image irradiance edge, ordinality

violation is said to occur.

Rubin and Richards suggest that either the spectral crosspoint or the ordinality

violation condition may be used to identify material boundaries, and that the regions

so defined may then be characterized by their ordinality. It should be noted, though,

that neither the spectral crosspoint condition nor the ordinality violation condition is

sufficient to identify material boundaries in the absence of the single source assump-

tion or in the presence of specularities. For example, if two spatially and spectrally

distinct light sources illuminate a uniform surface, their energies can be adjusted to

produce a spectral crosspoint at an edge. Similarly, a strong specularity produced

by a spectrally biased light source can give rise to both a spectral crosspoint and a

violation of ordinality (see Figure 6.2 for illustration of a similar point). Further-

more, neither condition is necessary for a material boundary. Since there are no

reports on the implementation of this algorithm on real images, it is not possible to

judge how robust it would be given these caveats. Chapter 6 illustrates how a similar

segmentation algorithm performs on real images.

3.6 Recovering the Illuminant Color using Spec-
ular Reflections

Recovering reflectance from the image irradiance in Equation 1 would be simple and

straightforward if the illuminant spectral energy distribution were known. In fact,

in some situations, one can obtain direct knowledge of the illuminant color from the

image irradiance. A fourth class of color algorithms find the illuminant color from

specular reflections and use it to extract invariant descriptors of reflectance from

image irradiance.
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Klinker, Shafer and Kanade [1021 use the dichromatic reflection model as the

basis for an algorithm that separates specular from diffuse reflections for objects

made of inhomogeneous materials. As described in section 3.2, the light that an

inhomogeneous material reflects is the sum of specular reflections from its surface and

diffuse reflections from the pigment particles imbedded in it. Like the NIR model, the

dichromatic reflection model therefore assumes that the color of the reflected light is

the vector sum of the color of the illuminant and the color of the pigment particles

(or the color of the object), in color three-space. The color vector for each pixel

in an image thus has two components: one vector that has the same direction as

the illuminant color vector, with a magnitude depending on the imaging geometry;

and another vector in the direction of the object color vector, whose magnitude also

depends on geometry. The algorithm based on this model finds the illuminant color

vector by finding characteristic cluster shapes in the three-dimensional plot of pixel

color values from an image.

Lee [631 ano ... ,ey and Binford [391 use similar techniques to find illuminant color

based on the same assumption, that for many materials the reflected light color is the

sum of the body and illuminant colors. In his chromaticity convergence algorithm,

Lee plots pixel color values in the two-dimensional CIE chromaticity space, or in

an equivalent two-space with coordinates S'/S j and SI/Sk. (Taking ratios of the

image irradiance values in different color channels factors out the absolute illumination

level.) The pixel values for any one object lie on a line connecting the coordinates

of the illuminant color and the object color (see Figure 3.2(a)). (That is, if the light

source color is considered the "white" point, the effect of a specularity is to move the

color of the reflected light away from the color of the object and toward "white," or

in other words, to "desaturate" it. Of course, if the light source is strongly saturated

itself, this will not be destauration in the usual sense.) When the pixel values from

many objects are plotted on one chromaticity diagram, the result is a set of lines, all

of which point roughly to the single point that represents the illuminant color (see

Figure 3.2(b)). Lee has proposed several methods ([63], pets. comm.) for finding the
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convergence point that identifies the source color.

(a) (b)

x 
x

Figure 3.2: (a) The pixel color values from an inhomogeneous material fall on a line
in the CIE chromaticity plane. The endpoints are the light source color (xo, Y.) and
the pigment or body color (xi, yi). (b) Pixel color values plotted from several different
inhomogeneous materials under the same illuminant form a set of lines which converge
on the source color. Redrawn from [63].

Both algorithms described above work under the single source assumption - both
require that the illuminant color be the same for all objects in the scene, so that
it may be identified as the color common to all pixels. As Lee has demonstrated

using images of natural scenes (pers. comm.), variations in pigment concentration,
surface orientation, etc., insure that the mix of specular and diffuse reflections varies
enough so that even without overt highlights there is enough information to recover

the illuminant color.

These algorithms demonstrate how to exploit information in a complicated, real-
istic image irradiance equation. The ostensibly simplifying assumptions underlying
lightness algorithms, for example, might actually make the problem harder. It might
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be easier for our visual system to recover the illuminant color given shading, 3-D

curvature and specularities. The experiment described in Chapter 7 tests whether

the human visual system uses information from specularities in estimating the color

of the illuminant.

3.7 Conclusions

Most of the algorithms described here rely on similar assumptions about the natural

world and hence may be expected to fail in the same way when the assumptions are

not met. For example, all classes of algorithm except the last will give inaccurate

results when confronted with surface reflectances with significant specular compo-

nents. Whereas lightness algorithms are designed to compensate for illumination

that varies smoothly across space, spectral basis algorithms (in their present form)

can compensate only for virtually uniform illumination. Yet both require a Mon-

drian world in which boundaries between surfaces of different reflectances are marked

by step changes in image irradiance. Some forms of lightness algorithms, segmenta-

tion algorithms, and spectral basis algorithms require that the collection of surface

reflectances average to the same "grey" in every scene. Segmentation algorithms fur-

ther require that there be only a single light source illuminating the scene. Another

form of spectral basis algorithm relinquishes the grey-world assumption by assuming

instead that there is one more sensor type than there are independent components of

surface reflectance. To distinguish better between these algorithms as candidates for

explanations of human color vision, more quantitative tests of color phenomena are

needed.
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Chapter 4

Lightness Algorithms

Lightness algorithms, which recover an approximation to surface reflectance in inde-

pendent wavelength channels, were introduced in Chapter 3 as one method to compute

color. In this chapter, specific lightness algorithms are reviewed in detail and a new

extension (the multiple scales algorithm) of one of them is proposed. Two new results

are discussed. The first is the fact that each of the lightness algorithms may be de-

rived from a single mathematical formula under different conditions, which, in turn,

imply different limitations for their implementations by man or machine. In particu-

lar, the algorithms share certain limitations in their implementation that follow from

the physical constraints imposed on the statement of the problem and the boundary

conditions applied in its solution. This analysis leads to a new rigorous statement of

Land's original retinex algorithm. The second is the demonstration of a framework

based on regularization theory that incorporates several of the assumptions on which

most lightness algorithms are based and leads to a form of lightness algorithm similar

to that most recently proposed by Land [60].

4.1 Review of Lightness Algorithms

The starting-point is again the simplified form of image irradiance equation derived

in Section 3.3 (Equation 3.18):
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S'(r) = log I'(r) = log -E'(r)p'(r)] = E(r) + A'(r). (4.1)

where S'(r) is the logarithm of the image irradiance P(r), E'(r) is the integrated

effective irradiance, and p'(r) is the integrated surface reflectance, each given in the

ith-type lightness channel. A is the logarithm of p; B is the logarithm of E.

4.1.1 The Retinex

Land's retinex algo-ithm [58] uses the three lightness assumptions described in sec-

tion 3.3.1 and assumes that the image irradiance signal is recorded by a discrete array

of sensors, indexed by a one-dimensional variable.

Spatial decomposition of the intensity signal is performed by one-dimensional first-

order spatial differentiation in the following way. Sensor x is connected by random

paths to each of many different sensors w (w = 1, 2, ...N; w labels the startpoint and

the path). Following a single direction in each path, at each junction (k-, k- + 1)

the difference of activities (St. - St..) is calculated and thresholded, for each

lightness channel i. The sum of differences up to sensor z is collected for each path

that crosses it. For one path, this sum of differences approximates the difference

between the signal at x and the signal at the start-point of the path. Under the three

lightness assumptions, this difference, Li(x, w), closely approximates log(p.,/pi), the

log of the ratio of surface reflectances at the end- and start-points.

Spectral normalization is then achieved by averaging Li(x, w) over all startpoints

w, which, by lightness assumption 3, fall in a random assortment of colors, to yield

the lightness LV(x):

L'(x) = N lgp L'(x, w) , - =1 log = logPpi - log .
N -N

As observed by Brainard and Wandell [12], the latter expression is equivalent to:

log [PI/,]
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where A' is the geometric mean of surface reflectances in the scene. Lightness is

therefore normalized by the average surface reflectance of the scene, as described in

Chapter 3.

In the original retinex algorithm [61], spectral normalization is achieved by a

different method: normalizing to white. Paths are drawn across the sensor array as

above. At each junction in each path, the ratio of image irradiances Iki+Il/Ik is

taken. (Note that since I = log S, the ratio is equivalent to the difference above).

The sequential product of ratios up to sensor z is taken along each path that crosses

x. The threshold step is implemented by setting each ratio close to 1 equal to 1.

Normalizing to white is achieved by resetting to 1 each ratio greater than 1 before it

enters the sequential product. This reset operation insures that the sequential product

at sensor x for one path, L'(x, w) is equal to the ratio of the irradiance at x to the

highest irradiance encountered along that path. Under the lightness assumptions,

this ratio is approximately equal to the ratio of surface reflectance at x to the highest

reflectance along the path. Assuming that each path reaches the area of highest

reflectance in the scene, LP(x, w) is a measurement of the reflectance at x normalized

to "white." The lightness at sensor x, L'(x) is then set to the geometric mean of

L'(x, w) over all paths. In other words, lightness is normalized by assigning 100%

reflectance to the brightest patch in each lightness channel.

4.1.2 Horn's Algorithm

Horn's algorithm [44] makes the first two lightness assumptions listed in Section 3.3.1.

It differs from the retinex algorithm in that the rotationally symmetric two-dimensional

Laplacian operator, V2, performs the first step, spatial differentiation of the intensity

signal. The lightness obtained by this method is therefore a solution to the Poisson

equation inside the Mondrian:

V2 L(z, y) - T[V 2S(z, y)], (4.2)

where T represents the threshold operation which is performed on the output of the
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Laplacian.'

In its continuous form (that is, when (x, y) are continuous spatial variables), Equa-

tion (4.2) has a known solution under certain boundary conditions. If (1) the region

on which S is defined (the sensor array or retina) is infinite or (2) the sensor array

is finite, but the image is wholly contained in it and is surrounded by a border of

constant reflectance for which T[V 2S] = 0, the inverse Laplacian is then performed

by convolution with the Green's function g = l In(r):2

L(x, y)= J1(1/21r)ln(r) * T[V2 S((,7)] d~d,7 (4.3)

where rI = (z - ()2 + (y - 77)2 and (x, y) are the coordinates of the point in the sensor

array at which lightness is evaluated.

When either condition (1) or (2) is met, the reconstructed lightness is unique up

to a constant, which is set by normalizing as prescribed by Lightness Assumption

3. Condition 1 is not satisfied by the photoreceptor array in the human retina.

For a finite sensor array or a retina, condition (2) is crucial to Horn's solution; its

importance is discussed later.

When the intensity function S is not continuous but discrete, for example, sampled

by a discrete sensor array, and boundary condition (2) is met, the inverse solution

may be expressed as a convolution with a similar function.

An alternative method of solving Equation (4.2) in the discrete case is by iteration.

The Laplacian is approximated by a discrete differencing operator:

N
T(Sii- 1/N Sk,1 ) = T[V2 SJ] (4.4)

where Si is the discretized version of S(x, y); (ij) a.- coordinates of retinal cells; and

Sk" are the N closest neighbors of Si, where N = 6 a closely-packed array.

IThe superscript i is from now on dropped in the expressions L'(z, y), Si(z, y) etc. although it
is still there by implication.

21n Horn's original formulation, the Green's function used is (1/21) ln(l/r), which lacks the minus
sign that makes it equal to the one used here.

66



Because T[V2 Sij] = V2 Lij (Eq. 4.2), the left-hand side of Equation (4.4) may

be rewritten as:

N E Lk, = L (4.5)

where Lj is the lightness to be solved for. To perform the inverse Laplacian, Gauss-

Seidel iteration takes as its starting-point the exact solution of Equation (4.5):

LIJ = V 2L1 3 + . (4.6)

In the first step of the iteration, the Lkj are set to zero, so that the first solution is

L j = V 2Lj = T[V 2Sj]. This solution is then substituted for the Lk in the next

step (that is, Lk, = V 2LkL). At each subsequent step of the iteration, the solutions

Lj, obtained in the previous step are substituted for the Lkl. The iteration converges

slowly but stably to the correct solution.

4.1.3 The Multiple Scales Algorithm

The multiple scales algorithm is an alternative method of solution for the inverse

Laplacian problem expressed in Equation (4.2). This solution is based on the equation

- j dt f G(x - C, y - qi; t)V'f ((, vi)dCdi7

j dt 10 00 V 2G(x - Cy - 7; t)f((, i,)dqdq = f(x, y) (4.7)

which states that the Laplacian operator may be inverted (modulus a harmonic func-

tion) by summing its convolution with a Gaussian (G) over a continuum of variances

or scales (t). 3 It shoul, ba noted at the outset that although this equality is true for

continuous integrals, it might degrade gracelessly in the discrete case. In other words,

a finite sum of terms over a discrete range of scales might not converge to the desired

function. This is possible because each term in the sum over scales is a bandpass
3 A similar equation and result has been independently obtained by Zucker and Hummel[118],

although not applied to lightness computation.
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function in the spatial frequency domain; that is, V2G assumes very small values for

zero or very high frequencies. These frequencies may therefore be irretrievably lost

in the sum over scales, particularly if there is sufficient noise in the original signal.

The proof of Equation 4.7 is as follows. Any function u(x, y; t) such that

u(x,y;t) = G(x - C,y - ql;t)f(,ri)didr7, (4.8)

where G is the Gaussian kernel and f((, 77) is a bounded function, satisfies the heat

equation,

V 2u(x,y;t) -- -u(a'y;t0. (4.9)

Conversely, given any bounded function f(x, y), u(x, y; t) may be constructed as

in equation 4.8. Then, given that

- foT u(x,y;t)dt = u(x,y;0) - u(x,y;T),

it follows that

-lim [T2 u(x,y;t)dt = u(x,y;O) - lim u(z,y;T) = u(z,y;O), (4.10)
Ti-oo a t Too

if we set limT-..wo u(x, y; T) to zero. (In doing so, we impose the boundary condition

that any harmonic function added to the solution must equal zero everywhere.) The

heat equation then implies that

- hm rVt)dty;)d u(xy;O). (4.11)

Because

V 2 u(z, Y; t) =

V 2 Jco G(x-(,y- i;t)f((,i 1 )dd7) --- V 2 G(z - C,y - v7; t)f( ,)dCdr,
0 0 J- _06
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equation 4.11 implies

-lim T dt I ' V 2G(x - C,y - rl;t)f((,rl)d~d i = u(X,y;O)
T ooco _ 00oo -00

and therefore, because

u(z,y;0) =

G(x - C, y - r7; O)f(C, 77)dC = 6(x - , y - )f(,i)dCdi = f(x, y)

the statement in equation 4.7 is proved.

The last part of Equation (4.7) implies that performing the Laplacian and then

taking its inverse on a function f is equivalent to summing the convolution of f with

-V'G over a continuum of scales. Because the Gaussian itself satisfies the heat

equation,

G = 2 G(, y; t) G(x, y; ti) - G(z, y; t2) (4.12)

at (tI -t 2) '

one may approximate the V2G filter as the difference of two Gaussians of different

scales. The sum over V2G filters is therefore roughly equivalent to the sum over

difference-of-Gaussians (DOG), in which all but the smallest- and largest-scale Gaus-

sians are canceled (as illustrated in figure 4.1). Formally, the sum of V 2G over all

scales yields

-lim G(z,y;tj) - lim G(x,y;T) = b(x,y) - k
t lP- 0 T -+oo

where 6(x, y) is a delta function, a Gaussian of infinitesimally small scale, and k is a

constant that may be normalized to zero. Equation (4.7) therefore becomes:

L 6 6(z - C, y - ?) f(C, i7)dCd? = f(x, y). (4.13)
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The multiple scales algorithm therefore filters the intensity signal S(x, y) through
- V 2G (the DOG operator), thresholds the result, and sums it over a continuum of

scales to recover L(x, y):

dt L L T[V 2G(x - C, y - q; t)S(C,ri)]dCdri = L(x,y) (4.14)

Discrete sums over less than ten scales of - V 2G yield good approximations to

the several simple functions f that we have tested. We have not implemented the

algorithm on the more complicated functions necessary to test it as a method for

lightness recovery. Hence it is presented here largely for academic interest, but may

yet prove useful in machine vision applications.

4.1.4 Crick's Edge-Operator Algorithm

Crick's solution4 to the lightness problem is formulated for a Mondrian under uni-

form illumination surrounded by a border of constant reflectance. Under these special

conditions, the edge-operator formula recovers the lightness function solely from in-

formation at the edges between patches of constant reflectance. The formula is the

two-dimensional analog of Gauss' integral, which, for a function F that is constant

within patches and zero on the boundary, makes the following statement:

F(x, y) = 1 dF ds (4.15)

where c indicates that the integral is performed over all edges in the image, dF is the

difference of F across each edge (always taken in the decreasing direction), n is the

normal to the contour a along which the integral is evaluated, and r is the distance

from the point (x, y) to the contour.

Lightness is obtained using Equation (4.15) by setting F = S. This method

of solution makes particularly clear the problem of accurate normalization of the

computed lightness. Under the special condition that the illumination is uniform

4F. C. Crick, personal communication.
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Figure 4.1: (a) The Gaussian distribution in one dimension. (b) The Laplacian of the
Gaussian is approximately equal to the difference of two Gaussians of different scales.
(c) The sum over multiple scales of DOG's yields (d) the difference of the smallest
scale Gaussians and the largest scale Gaussian. Physiologically, the sum would yield
a "lightness" neuron (e) with a narrow receptive field center and a large surround.
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on the scene, its contribution to dS at edges cancels, and the integral over edges

recovers A. Because the difference at an edge is ultimately referred to the value of 3

on the boundary, this value must be added to the result of the integral in order to

normalize it. Therefore, as in Horn's algorithm, the condition that A be constant on

the boundary is crucial in obtaining an accurate result. Yet because of the lightness

ambiguity discussed in section 3, it is impossible to recover the boundary value of A

exactly: only the value of S = L + A on the boundary is known. Because P is

assumed constant, the value of S on the boundary may be used as the normalization

term, ensuring that lightness will be everywhere proportional to reflectance by the

same factor.

When a gradient of illumination falls on the scene, if it is slow enough, it has no

effect on values of dS at edges, but if it falls on the boundary region it violates the

condition that S be constant there, and therefore A will be inaccurately recovered.

The distinguishing feature of Crick's formula for lightness is the use of lightness

information from the edges only. In summing the contributions only from contours

across which the intensity signal changes sharply, the formula performs the differenti-

ation and thresholding of lightness algorithms in one step rather than two. It is clear

that in some sense, Land's retinex algorithm performs a similar integral, because

when the threshold is appropriately set only the edges contribute to the lightness

calculation. The similarity between these algorithms is made formally explicit in

section 4.2.

4.1.5 Blake's Algorithm

Blake [7] proposes a modification of Horn's lightness algorithm based on the following

criticism, hinted at in the previous section: The use of the Green's function convo-

lution in solving for L in Equation (4.3) relies crucially on the condition that A is

constant on the boundary, which is not always met. Blake argues that many images

(Mondrian or natural) are bordered by surfaces of varying reflectance. For these im-

ages, the solution obtained by using Equation (4.3) yields an inaccurate reconstruction
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of lightness.

The inaccuracy results from the fact that the Poisson equation requires only that

V2 L = T[V2 ] = 0 inside surface patches. Thus any harmonic function, e.g.

a linear or sinusoidal function, in addition to a constant function, will solve the

equation. A solution in which the reflectance function varies linearly across patches,

for example, would be forced on data from a scene with a non-uniform boundary, in

order to match it to inappropriate boundary conditions. If, instead, the condition is

imposed only that T[V 2S] is zero on the boundary, then the solution to the lightness

problem will not be unique; that is, both accurate and inaccurate reconstructions

may be obtained.

A stricter constraint restricting the lightness function to be constant within patches

is more appropriate but would, in general, not admit any solution when Horn's bound-

ary conditions do not apply to the data.

In Blake's lightness algorithm, the problem of the boundary conditions is obviated

by using the gradient operator " instead of the Laplacian to perform the spatial

diffr,!ntiation step. The reconstructed lightness function must therefore satisfy the

equation:

VL = T[-VS] (4.16)

and is solved for by the path integral

L(xy) T[S]ds, (4.17)

whe e P is a path connecting (x0 , yo), at which the value of L is arbitrarily defined,

and ,z,y). If

curl (T[rS]) = 0,

as for a Mondrian, then the value of the integral depends only on (x0 , yo) and (x, y)

and is independent of the path taken between them. This method represents a for-

malization of Land's algorithm for a Mondrian.
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In the discrete case, an iterative solution may be performed that is similar to

Horn's, but differs in the location of the threshold operation. It is clear that Blake's

use of the gradient operator allows retention of information about linear gradients in

the reflectance function, which in Horn's method is discarded.

4.2 Formal Connections Between Lightness Algo-
rithms

The algorithms described in the above section employ different methods to follow

similar steps in the computation of lightness. In this section, the algorithms are put

into a single compact mathematical form that clarifies the similarities between them.

The demonstration of formal equivalences between lightness algorithms allows their

further evaluation to be based entirely on questions of implementation rather than

computation.

4.2.1 Green's Theorem and Lightness Algorithms

The full solution to the lightness problem, as stated by the Poisson equation (Eq. 4.2),

is given by Green's theorem, which expresses the relationship between the surface and

line integrals of a scalar function. The symmetric Green's formula is:

J j() V 2g - gV 24)dE = f(O Og - ga.O)ds (4.18)

where 0 is a scalar function defined in a region E enclosed by a contour C, da is an

infinitesimal element of the contour, and g is the chosen Green's function [56].

This formula may be used to solve for lightness in Equation (4.2) by making

appropriate substitutions, and by specifying appropriate boundary conditions: 4 =

L(C,ri) and g = - lnr, where r ( - z) 2 + (17- y)2 .

A unique solution is obtained if ae of two boundary conditions is met: in the

region beyond E, either (1) L is uniform or (2),,L = 0 [56].
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The following identities may now be derived: (a) Because V 2g is zero except at

the origin (x, y), where it equals 27r (proved by using Green's theorem),

J(OV!g) = 'L1fL(Ci,)(V2Inr)dS = L(xy).

(b) Because, under the boundary condition, OL = 0 outside S,

f 9Ook2=.r (nr)OL((,,7)ds = 0.

Therefore the full solution to the lightness problem under the boundary conditions

specified above is

,1 (Inr) L(C, )dd7 + 1 L(C,) n rds (4.19)

Term I + Term 2

where C is a closed contour chosen to lie in the boundary region beyond any edges

in the image so that L is defined along it, n is the normal to C, and * indicates a

convolution.

The following discussion shows that Term 1, which sums a local spatial derivative

over the image region, yields the three different methods of computing lightness found

in Land's, Horn's and Crick's algorithms. Term 2, which depends on the value of

lightness in the boundary region, normalizes the lightness computed by Term 1. If

the lightness on the boundary is specified exactly, and V2L in the image region is

provided as data, then the formula yields a unique solution to the lightness problem.

4.2.2 The Normalization Term

In any application of this formula, one of the two boundary conditions listed above

must be met. If L(C, q/) is uniform in the boundary region, then Term 2 is constant,

and, if unknown, may be reset arbitrarily, simply to offset lightness. If L varies along

C, so that a,,L(C, 71) = 0 on C, then Term 2 will vary for each (x, y). In this case, if
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Term 2 is arbitrarily set to a constant, the reconstructed lightness function in general

will not resemble the true reflectance function. This point is effectively the same that

Blake makes, using a different argument (see section 4.1.5).

In Land's normalization scheme, discussed below, L(C, q/) is allowed to vary along

C, but in such a way that Term 2 is, nevertheless, approximately equal for each (x, y).

4.2.3 Horn's Method

Term 1 is exactly Horn's solution to the lightness problem, under boundary condition

1. In Horn's norma zatiun scheme, Term 2 is set arbitrarily to a constant (zero).

4.2.4 Crick's Method

Crick's solution to the lightness problem is obtained by integrating Term 1 by parts,

under boundary condition 1. For a general (non-Mondrian) two-dimensional image,

this technique yields

Term 1 = 18,L(Cjl ) - ds (4.20)
7r rTVr 2

where - labels the contours that correspond to intensity edges, and S - e labels the

remaining surface on which the intensity function is smooth. On a Mondrian image,

the integral over S - e vanishes, because V 2L is zero everywhere except at borders

between patches. The integral over edges is exactly Crick's edge-operator formula.

Term 2 of Equation (4.19) again provides the essential normalization constant. As

discussed in section 4, this term effectively adds to the first term the constant value

of lightness on the boundary to which the lightness values in the image have been

referred.

For a single uniform patch on a uniform background, the integral over S -

again vanishes, and the lightness solution becomes

n8.L(C, r) + -rd (4.21)
1"- nr8L¢TI- d 1 fcLc(C, ) nr--T

r2 T C r2
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where the integral is evaluated around the one contour that encloses the point (z, y),

8.L((, ,7) is the difference in L taken from the inside to the outside across the contour,

and Lc((, Y7) is the value of L on the boundary. Thus the equation reduces to

L( -y)ds (4.22)

where L, is the value of L anywhere inside the contour. Equation 4.22 is Gauss's

integral.

In chapter 8, the physiological implications of this scheme are discussed.

4.2.5 Land's Method

Land's retinex formula may also be derived from Term 1 of equation 4.19, by writing
V2 in polar coordinates and again integrating by parts. Term 1 then becomes:

1 12,rdo[odLdr 1r 2 v
Term 1 i7- - dO(L(x,y) - L.) (4.23)

where Re is the radius to the edge of the region S at angle 0, when (x, y) is take

as the origin. In deriving equation 4.23, boundary condition 2 is used to make the

assumption that as r '-* oo, In r approaches oo much more slowly than !L approaches

zero.

Written in polar coordinates, Term 2 becomes:

LN(x,y) = /j L(r,O)dO = 1 L dO

The sum of terms 1 and 2 thus yields L(x, y), trivially.

The first part of Equation 4.23 is a new formal expression of Land's method:

L(x, y) is given by integrating the radial gradient of L along a radial path, starting

at (z, y) and ending at the edge of the image, and then summing the integral over

all paths. In the actual implementation of the method, the gradient is sampled and

thresholded at discrete intervals, summed over each path, and then averaged over a
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finite number of paths. Each path starts at (z, y), but may end anywhere in the image.

Thus the result is the lightness at (x, y) relative to the average value of lightness in

the entire image.

The retinex algorithm does not normalize this result by adding to it the average

value of lightness in the image but instead relies on lightness assumption 3, which

states that the average value of lightness is invariant for all scenes. Lightness is

therefore simply offset by a constant that is the same for each scene.

In effect, the retinex algorithm assumes that the lightness averaged over the end-

points of paths is equal to LN, the lightness averaged over the contour enclosing the

image. It is important to note that each of these averages is weighted: the contribu-

tion of L& to LN is weighted by the angle 0 subtended by its part of the contour at

the origin (x, y), and the contribution of L(r, 0) to the retinex average is weighted by

the number of endpoints falling on it. If the image contains a fully random collection

of colors, and a large number of paths is chosen (> 200), then for most points in the

image the two normalization terms should be approximately equal. (Land's "alter-

native" retinex method for computing lightness, recently published [601 specifically

normalizes the flux at a given point with a similar weighted average over the entire

field.)

4.2.6 Spatial Integration and Temporal Iteration

The multiple scales solution and Horn's iterative solution to the inverse Laplacian are

formally equivalent. This statement is proved by putting each into the form required

for Liouville-Neumann substitution:

f = F +Hf

which is solved by making successive substitutions of (F + Hf) for f in the term

Hf, yielding the series:

f(n) = F + HF + ... + Hn- 1 F
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where F (a function), and H (a matrix or operator) are known. If in the integral

in Equation 4.14 we set apart the first term due to a Gaussian of scale 0 (the delta

function), then we may write F = At T[V 2SI, f = L, and H = G(At) where

G(At) is the Gaussian kernel of scale At. The multiple scales integral may then be

expressed as a series, the nth term of which is

L'(x,y) =

At {L"(x, y) + G(At) * L"((, q) + G 2(At) * L"((, 71) + ... G"(At) • L"(C, )} (4.24)

where L" = T[V2 S] and * indicates the convolution.

Horn's iterative solution may also be expressed as a series, the nth term of which

is:

I= L + G * L + 2* L" + ... Gn * L", (4.25)

where G is the discrete approximation to the Gaussian in matrix form, and Lv,. is

T[V 2Sj] as defined in Equation (4.4).

The two series are therefore equal to within a multiplicative constant. In practice,

they might each be noise-sensitive as discussed above, and might not converge quickly

to the correct solution, although Horn [43] has successfully implemented his method.

The operator G (or matrix G ) grows with each iteration to involve finally the entire

field, and thereby mediates the long-range effects represented explicitly by Land's

paths.

4.3 A Regularization Framework for Lightness Al-
gorithms

Equation 4.1 is impossible to solve in the absence of additional constraints: there are

twice as many unknowns as equations for each location r. Formally, it falls into the

class of inverse problems summarized by the equation:
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y = Az (4.26)

where A is a known operator. (Here S corresponds to y, z corresponds to and A

corresponds to the linear operator that sums 0 and P to give S.) The direct problem

is to determine y given z. The inverse problem is to find z, given y - the function

Y becomes the "data" and z the "solution". Although the direct problem is usually

well-posed, the inverse problem is often ill-posed. Equation 4.1 represents one such

ill-posed problem.

Standard regularization theories for "solving" ill-posed problems have been devel-

oped by Tikhonov [104] and others. The basic idea underlying regularization tech-

niques is to restrict the space of acceptable solutions by choosing the one solution

that minimizes an appropriate functional. Among the methods that can be employed

(see [93]), the main one is to find z that minimizes

JjAz - V112 + \Il1Pzll2. (4.27)

The choice of the norm j•, usually quadratic as in Equation 4.27, and of the lin-

ear stabilizing functional IIPzI, is dictated by mathematical considerations, and most

importantly, by a physical analysis of the generic constraints on the problem. The reg-

ularization parameter A controls the compromise between the degree of regularization

of the solution and its closeness to the data.

To employ standard regularization techniques, one must formulate the physical

constraints on the recovery of 0' from Si in terms of a quadratic functional. The

constraints we would like to enforce are: the single source assumption and the spectral

and spatial regularization constraints.

Assume for simplicity that the signal S is given on an array indexed by a one-

dimensional variable x. The single source assumption says that:

EP(z) = kVE(x) (4.28)
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or that

E'(x) = ' + E(x). (4.29)

This assumption reduces the number of unknowns at each location x.

The spectral regularization constraint says that most illuminants and reflectances

have a finite (and small) number of degrees of freedom. In other words, as in the

primary assumption underlying spectral-basis algorithms (see Section 3.4), most illu-

minants and reflectances may be fully described as linear combinations of a fixed set

of basis functions.

The spatial regularization constrair- formalizes and extends the lightness assump-

tions that (a) p'(x) is either constant or changes sharply at boundaries between dif-

ferent materials, and (b) E(x) is either constant or changes more smoothly than pi(Z)

across space. Whereas Horn's algorithm, for example, imposes the strong constraint

(in two-dimensions) that all values of V2 E(x, y) strictly below a fixed threshold are

due to E(x, y), the regularization assumption requires only that E(x) vary less sharply

across space than p'(x) and effectively allows the limit on the spatial variation of E(x)

to be reset for each scene.

The spatial regularization constraint may be enforced on Equation 4.1 by requiring

that its solution minimize the following variational principle:

EZS; -(pi + e + ki)]2 + A[±AE]2 + P[G * 12 + _[ d2 i]2, (4.30)
ZL dx + dX 7 .. 2, (.0

where G is a gaussian filter with standard deviation a, and A,-y and # are parameters

controlling the degree of regularization and its closeness to the data. The first term

requires that the solution ( ' + E) be close to S'. The second term enforces the

constraint that the illumination vary smoothly across space. The third and fourth

terms enforce the constraint that the reflectance function consist only of spatial fre-

quency components. Smoothing the reflectance function insures that only the low

to intermediate spatial frequencies that are passed by the Gaussian are minimized.

The high spatial frequencies do not contribute to the smoothed reflectance function
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derivative so they are not minimized. The fourth term requires that very high spatial

frequencies of 0' are also minimized, in order to eliminate noise.

Solving Equation 4.30 for its minimum in the Fourier domain reveals how the

constraints may be applied in the simple form of a linear filter. Solving the Euler-

Lagrange equations for Equation 4.30 yields the following result for the Fourier trans-

form of 0':

1 AW 1 S,(W) (4.31)
AW2+ [ +AW2][3e-- 2 ,2 + Y4

In other words, 0 (and similarly P) may b, btained by filtering S through a linear

filter. The above expression cla:ifies the need for the fourth term in the variational

principle of Equation 4.30. If -y were zero, the filter would approach unity for very

high frequencies (both numerator and denominator would tend to infinity as W'),

whereas for nonzero -y, the filter would tend to zero for very high frequencies (the

denominator would tend to infinity as w4 ). For any -f, as w approaches zero, the filter

approaches zero. Figure 4.2 illustrates the behavior of the filter for several values of

the parameters t, ,3 and a.

The filter is thus a bandpass filter that cuts out intermediate spatial frequencies

due to the effective irradiance and very high spatial frequencies due to noise and

retains high spatial frequencies due to reflectance. It filters out the d.c. component,

which must be reset by the normalization constant. The filter is similar to Land's

most recent retinex operator [60], which divides the image irradiance at each pixel by

a weighted average of the irradiance at all pixels in a large surround and takes the

logarithm of that ratio to obtain ligbtness. Such a center-surround operator becomes

a bandpass filter in the Fourier domain. The two operators are not identical, though.

The regularizing filter acts on the logarithm of irradiance. The lightness value it

computes is scaled by (roughly) the average value of the logarithm of irradiance at all

pixels, not by the logarithm of the average value. The regularizing filter is therefore

linear in the logarithm. ,hereas Land's is not. Yet the numerical difference between

the outputs of the two filters is small in most cases (E. H. Land, pers. comm.), and
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Figure 4.2: The filter that acts on S'(w) to yield 0'(w), derived from the variational
principle in Equation 4.30. (a) Parameters: -y = 1, # = 0.01, o, = 4, A = 10. (b)
Parameters: ~y = 1, 6i = 10, a = 4, A = 10. (c) Parameters: y= 0, #8 = 10, a = 4,
A = 10. Note the behavior of the filter when -y goes to zero. ficontrols the extent
to which low-frequency components of the irradiance signal are removed from the
output reflectance.
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both produce lightness values that correlate well with human perception.

The quadratic variational principle of standard regularization is a special case of

a more general regularization scheme based on Markov random fields, sketched by

Poggio and staff [95].
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Chapter 5

Learning Lightness Algorithms

As demonstrated in Chapter 4, the lightness problem, to recover reflectance from im-

age irradiance in a single chromatic channel, is ill-posed: the information supplied by

the image is not sufficient in itself to specify a unique solution. The problem may be
"solved" by using standard regularization techniques to enforce natural constraints.

These constraints are explicitly crafted from an analysis of the physical properties

of surfaces and lights. Yet how might a visual system learn and enforce similar con-

straints without a priori information? This question is important both for evolution

of biological visual systems and for the construction of artificial ones. Biological vi-

sual systems evolved methods for extracting information from sensor signals without

explicit knowledge of the constraints they could exploit, guided instead by how well

the methods achieved their goals. If for color vision the goal was to find the cherry

amongst the shadows and poisonous berries, then evolution selected the method that

found the cherry, without "knowing" how it did it.1

With hindsight, we can discern the constraints that the optimal system, by ne-

'K.K. and R. L. DeValois write[24]:"Consider the problem of finding the ripe cherries in a cherry
tree. Without color vision, one would find that the irrelevant contours produced by shadowing
effectively mask the regularity of form and brightness of the fruit. With color vision, however, the
problem is readily solved. The color contrast produced by red cherries against the green leaves is
quite obvious, despite the irregular and imperfectly correlated luminance contours." Color vision in
the sense of merely being able to discriminate between wavelengths of reflected light is not sufficient
to solve the task described here - the task requires image segmentation into regions of constant color
and so requires the steps discussed in Chapters 3 and 6.
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cessity, but without instruction, incorporated. Artificial visual systems can then reap

the benefits of evolution's hard work and be programmmed directly with the con-

straints that biological systems discovered by trial and error. But how more efficient

it would be if we could program our artificial visual system with a fast, compressed

version of how to discover constraints. Then the visual system could adapt to any new

environment it encounters, and more quickly than a Darwinian animal. This goal, to

make machines learn, is one of the spurs on the current neural networks movement.

The goal of the work in this chapter is to explore the simplest possible learning

techniques for artificial visual systems, using the lightness problem as a testbed. The

lightness problem serves well here, because it is a prototype for other problems in early

vision, and because regularization theory immediately suggests one effective lear-ing

technique, optimal linear estimation. Here optimal linear estimation is compared with

two additional simple techniques: backpropagation (BP) on a two-layer network, and

optimal polynomial estimation.

5.1 Associative Learning of Standard Regulariz-
ing Operators

Minimization of the regularization functional in Equation (4.27) corresponds to de-

termining a regularizing operator that acts on the input data y and produces as an

output the regularized solution z. Suppose now that instead of sc'ving for z, the task

is: given y and its regularized solution z, find the operator that effects the transfor-

mation between them. This section demonstrates that the regularizing operator can

be synthesized by associative learning from a set of examples. The argument consists

of two claims. The first is that the regularizing operator corresponding to a quadratic

variational principle is linear. The second is that any linear mapping between two

vector spaces may be synthesized by an associative scheme based on the computation

of the pseudoinverse of the data.
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5.1.1 Linearity of the regularized solution

The discrete form of Equation (4.27) is:

IIAz - y112 + AllPzll2, (5.1)

in which z and y are vectors, A and the Tikhonov stabilizer P are matrices, A does

not depend on the data, and I1 1 is a norm.

The minimum of this functional will occur at its unique stationary point z. To

find z, one sets to zero the gradient with respect to z of Equation 5.1. The solution

to the resulting Euler-Lagrange equations is the minimum vector z:

(ATA + APTp)z = ATy. (5.2)

It follows that the solution z is a linear transformation of the data y:

z = Ly, (5.3)

where L is the linear regularizing operator. (If the problem were well-posed, the

operator L would equal simply the inverse of A. It is important to note that L may

depend on the given lattice of data points. In particular, if the data are sparse, then

the components of the vectors z and y must be chosen carefully so that the same set

of spatial locations is represented in each.) Thus, variational principles of the form of

Equation (4.27) lead to a regularized solution that is a linear transformation of the

data.

5.1.2 Learning a linear mapping

Given that the mapping between a set of input vectors y and their regularized solu-

tions z is linear, how does one solve for it? To start, we arrange the sets of vectors y

and z in two matrices Y and Z. The problem of synthesizing the regularizing operator

L is then equivalent to "solving" the following equation for L:
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Z=LY (5.4)

A general solution to this problem is given by

L = ZY + ,  (5.5)

where Y+ is the Moore-Penrose pseudoinverse of Y [1]. This is the solution that is

most robust against errors, if Equation 5.4 admits several solutions. It is the optimal

solution in the least-squares sense, if no exact solution to Equation 5.4 exists. The

latter case is the one of interest here. To avoid look-up table solutions (which would

result if the set of input vectors y were orthogonal to one another and spanned the

space of all subsequent test vectors) the problem must be overconstrained; that is,

the number of examples (columns of Y) must be larger than the rank of the matrix

L. In this case, there is no exact solution to Equation 5.4 and the matrix L must be

found instead by minimizing the expression

M = lILY - Z112. (5.6)

L is then:

L = ZYT(YY) - i (5.7)

These results show that the standard regularizing operator L (parametrized by

the lattice of data points) may be synthesized without need of an explicit variational

principle, if a sufficient set of correct input-output pairs is available to the system.

Note that by supplying as examples the physically correct solutions z, one assumes

that they are identical to the regularized solutions z, and thereby enforces both

regularization and correctness on the linear operator obtained.
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5.2 Constructing a Lightness Operator By Opti-
mal Linear Estimation

In chapter 4 we derived a regularizing functional for the lightness problem and ex-

tracted a linear filter from it. To solve the lightness problem by "learning," we start

instead with the single assumption that there exists a linear operator that transforms

S'(r) into 0'(r), where A'(r) = log p'(r). Using optimal linear estimation, we may then

synthesize a linear operator from examples and examine the constraints it embodies.

Let p be the vector representing the discrete version of the function A(z) in one

dimension, e be the vector representing the discrete version of the one-dimensional

function E(x), and s be the vector representing the sensor response S(x), the sum of

p and e (dropping the superscript i for now). The "learning lightness" problem is to

construct an operator L that provides the best estimation Ls of p. The technique is

to find the linear estimator that best maps the input s into the desired output p, in

the least squares sense.

s and p may be thought of as vertical scan lines across a pair of two-dimensional

Mondrian images: an input image of a Mondrian under illumination that varies

smoothly across space and its desired output image, the Mondrian reflectance pat-

tern alone (see Figure 5.1). The input "training vectors" s are generated by adding

together different random p and e vectors, according to Equation 4.1. Each vector p

represents a patterr J step changes across space, corresponding to one column of a

(log) reflectance image. The step changes occur at random pixels and are of random

amplitude between set minimum and maximum values. Each vector e represents a

smooth gradient across space with a random offset and slope, corresponding to one

column of a (log) illumination image. The training vectors s and p are then arranged

as the columns of two matrices S and R, respectively. The goal is then to compute

the optimal solution L of

LS=R (5.8)
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Figure 5.1: (a) A Mondrian under a linear illumination gradient, generated by adding
together two 320x320 pixel images: one is the (log) reflectance image shown in (b),
an array of rectangles each with a different, uniform grey-level; tb other is the (log)
illumination image, in which the pixel values increase linearly in the same way across
eah column. The Mondrian in (b) is equivalent to the Mondrian in (a) under uniform
illumination. (c) The output of the linear operator when it acts on the Mondrian in
(a).
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Figure 5.2: (a) Input data, a one-dimensional vector 320 pixels long. Its random
Mondrian reflectance pattern is superimposed on a linear illumination gradient with
a random slope and - fset. (b) Corresponding output (dotted line) of linear operator
trained on 1500 unrepeated examples with linear illumination gradients and 15 %
edges (see text). Compare with correct solution (solid line), the reflectance pattern
alone. The vector in (a) was not part of the training set. The rms error is the
pixel-by-pixel root-mean-square error of estimated output compared to the desired
output.
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where L is a linear operator represented as a matrix.

Here we compute the pseudoinverse S+ by overconstraining the problem - using

many more training veci ,rs than there are number of pixels in each vector - and

using the formula that applies in the overconstrained case: S + = ST(SST)-1. To

avoid numerical instability, we add a stabilizing functional to Equation 5.7:

L = RST(SST + C(IIssTIr)- 1

(The pseudoinverse may be computed by other methods based on singular value

decomposition. It may also be computed by recursive techniques that improve its

form as more data become available - see Appendix C. The latter procedure, although

equivalent to our "one-shot" computing technique, may seem intuitively more like

learning.)

The operator L computed in this way recovers a good approximation to the correct

output vector p when given a new s, not part of the training set, as input. Figure 5.2

shows the estimated output compared with the desired output, for a linear operator

L trained on 1500 unrepeated examples of one-dimensional Mondrians under linear

illumination gradients, in which the reflectance values are on average approximately

10 % of the total change in illumination across the vector, and at each pixel there is a

15 % chance of a reflectance edge occurring. For some test input vectors the prediction

is even better, in others it is worse. A second operator, estimated in the same way,

recovers the illumination e. Acting on a random two-dimensional Mondrian L also

yields a satisfactory approximation to the correct output image (see Figure 5.1).1

What natural constraints does the linear operator embody? The answer lies in

the structure of the matrix L. We assume that, although L is not a convolution

operator, it should approximate one far from the boundaries of the image. That is, in

its central part, the operator should be space-invariant, performing the same action
2 Fstimation of the operator on two-dimensional examples should be possible, but computationally

very expensive if done in the same way. The present computer simulations require several hours when
run on standard serial computers (Symbolics 3600 and 3650 LISP machines). The two-dimensional
case will require probably much more time, unless run on a parallel machine.
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Figure 5.3: (a) llustration of the linear operator that best maps, in the least squares
sense, irradiance into reflectance, for input Mondrians under linear illumination gra-
dients. The operator learned is a matrix that acts on one-dimensional vectors. The
shape of the corresponding filter, shown here, is estimated by summating the central
rows of the matrix, shifting them appropriately. The shallow surround extends but
cannot be estimated reliably beyond the range shown here. (b) The filter estimated
from a training set of vectors half of which had linear illumination gradients, the other
half sinusoidally varying illumination gradients with random wavelength, phase and
amplitude. The peak value of each filter has been scaled by 0.01 for convenience of
display.
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on each point in the image. Each row in the central part of L should therefore be the

same as the row above but displaced by oLe element to the right. Inspection of the

matrix confirms this expectation. To find the form of L in its center, we thus average

the rows there, first shifting them appropriately. The result, shown in Figure 5.3(a),

is a space-invariant filter with a narrow positive peak and a broad, shallow, negative

surround. (We do not attempt to examine the structure of the surround beyond its

central space-invariant range.)

(Because we start from the image irradiance equation in Equation 4.1, we assume

that the illumination and reflectance vectors that are added together in the input

training data are the logarithms of the "real" illumination and reflectance. Thus the
"real" illumination gradients that we recover vary exponentially across space. When

we use instead the logarithms of linear illumination gradients in the training data, we

obtain a qualitatively similar receptive field.)

To observe how the shape of the estimated operator varies with the type of illu-

mination gradient in the training set, we synthesize a second operator using a new

set of examples. This set contains equal numbers of vectors with linear illumination

gradients and vectors with slowly varying sinusoidal illumination components of ran-

dom wavelength, phase and amplitude. Whereas the first operator, synthesized from

examples with strictly linear illumination gradients, has a broad negative surround

that remains virtually constant throughout its extent, the new operator's surround

has a smaller extent and decays smoothly towards zero from its peak negative value

in its center (see Figure 5.3(b)).

The form of the space-invariant filter is similar to that which results from the direct

application of regularization methods exploiting the spatial constraints on reflectance

and illuminaticn described in Chapter 4. It also resembles the solution derived by

posing the lightness problem as a Poisson equation. As noted in Chapter 4, the derived

and estimated filters are similar to Land's most recent retinex operator [60], which

divides the image irradiance at each pixel by a weighted average of the irradiance at all

pixels in a large surround and takes the logarithm of that result to yield lightness. The
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lightness triplets computed by the retinex operator agree well with human perception

in a Mondrian world. The retinex operator and the matrix L both differ from Land's

earlier retinex algorithms, which require a nonlinear thresholding step to eliminate

smooth gradients of illumination.

The Fourier transform of the filter is approximately a bandpass filter that cuts

out low frequencies due to slow gradients of illumination and preserves intermediate

frequencies due to step changes in reflectance (see Figure 4.2). For linear gradients of

illumination, which are effectively very low spatial frequencies, the surround is neces-

sarily very broad in the space domain. When the spatial frequencies of illumination

are increased, the surround shrinks, as expected. In contrast, the operator that re-

covers the illumination, e, takes the form of a low-pass filter. (Because of the initial

log transformation on the image data, the estimated algorithm can be regarded as an

example of homomorphic image processing.)

The shape of the linear lightness operator suggests another way in which simul-

taneous color (or brightness) contrast might be linked to color constancy. Here the

lightness operator is "trained" to discount illumination gradients, the first step to-

wards color constancy (spatial decomposition). Yet what results is an operator whose

shape should naturally produce simultaneous contrast; a dark patch should appear

darker when against a light background than against a dark one. The lightness op-

erator trained on a mixture of illumination gradients has a negative surround which

weights nearby pixels more heavily than distant ones, and thereby should produce

local contrast effects. The lightness operator trained on linear gradients, on the other

hand, will produce global contrast effects of the sort for which lightness algorithms

are criticized (see Section 3.3.3). In fact, in the absence of normalizing factors, the

output reflectance it computes for a patch of fixed input reflectance decreases lin-

early with increasing average irradiance of the input test vector in which the patch

appears. That is, the lightness operator does enhance the contrast between a patch

and its surround.

The linear operator of Figure 5.3(a) performs well on new test input vectors in
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which the density and amplitude of the step changes of reflectance differ greatly

from those on which it was trained. The operator performs well, for example, on an

input vector representing one column of an image of a small patch of one reflectance

against a uniform background of a different reflectance, the entire image under a linear

illumination gradient. This result is consistent with psychophysical experiments that

show that color constancy of a patch holds when its Mondrian background is replaced

by an equivalent grey background [106].

The shape of the space-invariant portion of the linear operator, particularly of its

large surround, is also suggestive of the non-classical fields that have been found in V4,

a cortical area implicated in mechanisms underlying color constancy [27, 110, 116, 117]

(see Chapter 8).

The technique of optimal linear estimation is closely related to optimal Bayesian

estimation (see Appendix C). If we were to assume from the start that the optimal

linear operator is space-invariant throughout its extent (which it is not), we could

considerably simplify (and streamline) the computation by using standard correlation

techniques ( [1]; see Appendix C). Yet the resultant operator would probably not work
as well as the one synthesized here.

5.3 Constructing a Lightness Operator by Back-
propagation

Because the lightness problem as stated here is a linear problem, perhaps it is not

too surprising that the solution provided by optimal linear estimation works so well.

In the real world, the recovery of lightness from the image irradiance is not a linear

problem, and one would not expect a linear operator to solve it successfully. We there-

fore explore nonlinear methods of constructing lightness operators from examples, in

particular backpropagation and optimal polynomial estimation.

Backpropagation is gradient descent on a "neural" network with nonlinear units

arranged in more than one layer [99]. We construct a two-layer backpropagation
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percent edges rms error
BP lin

20 0.021 0.023
50 0.016 0.019
90 0.013 0.017

Table 5.1: Comparison of a BP net and estimated linear operator trained on the same
set of 10000 examples under linear illumination gradients, with 85 percent edges. (In
each example, reflectance edges occur at roughly 85 percent of the pixels.) Both the
BP net and linear operator perform worse when the percent edges in the test vectors
decreases. For each value of percent edges, the root-mean-square (rms) error (the
pixel-by-pixel error between the actual and desired outputs) is calculated over 20000
test vectors.

network with 32 input units, each of which connects to each of 32 hidden units, each

of which connect3 to each of 32 output units (see Figure 5.5). On each trial, each

input unit receives the value of one pixel in a 32-pixel input vector. The hidden

units and output units have sigmoidal nonlinearities. After many passes through a

set of training vectors, the weights on the units stabilize to a configuration which,

in the ideal case, minimizes the square error between the actual and desired outputs

summed over the entire training set. (Note that performing gradient descent on a

network with linear units is eqivalent to computing the regularized pseudoinverse (see

Figure 5.4). Since the pseudoinverse is the unique best linear approximation in the

L2 norm, a gradient descent method that minimizes the square error between the

actual output and desired output of a fully connected linear network is guaranteed

to converge to the same global minimum.)

The backpropagation network requires an order of magnitude more time to con-

verge to a stable configuration than does the linear estimator for the sarr ^ set of

10000 32-pixel input vectors with linear gradients of illumination. The network's per-

formance is slightly, yet consistently, better, measured as the root-mean-square error

in output, averaged over sets of at least 20000 new input vectors (see Table 5.3).

Interestingly, the backpropagation network and the linear estimator seem to err in
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Figure 5.4: (a) Gradient descent performed on this network of linear units is equivalent
to computing the regularized pseudoinverse. Each input vector in the training set, Sj
(j = 1...J), is fed to the network and its corresponding output vector Aj is computed
using the current set of weights Lij. The weights Lij are changed in proportion to the
size of the error between Ai and the correct output vector Rj. Over a finite number
of iterations of each training vector in the set the weights converge to the matrix
elements Lij found by computing the regularized pseudoinverse shown in (b).
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Figure 5.5: The backpropagation network. The outputs of the hidden and output
layers are passed through a sigmoid function. As in gradient de-cent on the linear
network in Figure 5.4, the error between Ri and the correct ou-, it vector R, drives
the changes made to the weights Mi, and Li on each iteratiun.
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percent-edges rms error
BP lin

15 0.81 0.52

50 0.41 0.34
90 0.35 0.29

Table 5.2: Comparison of a BP net and estimated linear operator trained on the same
set of 10000 examples under linear illumination gradients, with 85 percent edges, as
described above. In this example, the BP net performs much worse than the estimated
linear operator, because the configuration to which it has stabilized corresponds to a
local rather than global minimum.

the same way on the same input vectors. Occasionally, the BP net does much worse

than L, when, because it is not minimizing a quadratic functional, it falls into a local

minimum during training (see Table 5.3).

We might expect the backpropagation network to perform significantly better

than the linear estimator on tasks more complicated than the extraction of a linear

illumination gradient. Accordingly, we train the BP net and a linear operator on the

same set of 10000 input vectors representing Mondrians under sinusoidally varying

illumination. The BP net again only slightly outperforms the linear operator (see

Figure 5.6).

In the preceding examples, the input vectors are constructed by adding reflectance

vectors to illumination vectors, on the assumption that a logarithmic transformation

has been performed on the original intensity signal in which reflectance and illumi-

nation are multiplied. (Biological photoreceptors perform a similar transformation.)

Trained on input vectors representing the product of illumination and reflectance, the

linear operator performs slightly but consistently better than the backpropagation

net (see Figure 5.7). This result is surprising since the task that the linear operator

performs is no longer linear.
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Figure 5.6: (a) Input data, a one-dimensional vector 32 pixels long, consisting of
Mondrian reflectance pattern added to sinusoidally varying illumination gradient.
(b) Outputs of linear operator (dotted line) and BP operator (dashed line) trained
on the same set of 10000 examples under sinusoidal illumination gradients, of which
(a) was not one, compared with correct output (solid line).
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stabilized to a global minimum.
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5.4 Constructing a Lightness Operator by Opti-
mal Polynomial Estimation

The natural extension of the optimal linear estimator is the optimal polynomial

mapping. The Weierstrass-Stone theorem suggests that polynomial mappings, of

which linear mappings are a special case, can approximate arbitrarily well all con-

tinuous real functions. We estimate the polynomial mapping of order two between

input and output by estimating the optimal linear mapping for input vectors con-

taining the original input components and all pairwise products between them. We

compare this polynomial estimator with the BP net trained on the same set of orig-

inal input vectors, with edge density 85 percent (each pixel in the reflectance vector

has an 85 % chance of being at an edge). The polynomial estimator outperforms the

BP net by a small margin that decreases as the edge density of the input decreases,

as illustrated in Table 5.3. Figure 5.8 illustrates the performance of the BP net, the

optimal polynomial estimator of order two, and the optimal linear estimator acting

on a test input vector with a linear illumination gradient.

percent-edges rms error
BP poly

10 0.016 0.013
50 0.017 0.011
85 0.019 0.010

Table 5.3: Comparison of a BP net and optimal polynomial mapping of order two
trained on the same set of 10000 examples under linear illumination gradients, with
85 percent edges, as described above. The rms errors are averaged over 2000 trials of
new input vectors. This BP net has stabilized to a global minimum.

Recently, it has been demonstrated that a BP net can represent exactly any poly-

nomial mapping, given polynomial output functions of at least order two for each

unit and enough hidden units and layers ( [85]). This statement, together with the

Weierstrass-Stone theorem, implies that a BP net with sigmoid outputs and enough

103



0.W

OA-

&AM.

0 5 1 is as so
-1 number

aiur .8 Input Da n upt(b oPoeatran opimaoyoipin
of oder wo raind onthesameset f 1000 xampesnderlina iuminatio

grdet.Teplnma oeao a bandb esitntheoma ia
ecprao foInutvcor otann heoiinlipu opoet olythse er

use fo tan h Poeao)adalpiwepout ewe hm hsB

net as saie oag-blmnmm

'10-



units and layers can approximate any real-valued continuous function. That the opti-

mal polynomial mapping of order two performs better than does the two-layer BP net

suggests that the net might need to be very much larger to approximate closely the

lightness transformation. That the linear operator does almost as well as the other

two suggests that it captures most of the essential features of that transformation.

5.5 Conclusions

The significance of these results lies in the facts that a simple statistical technique

may be used to synthesize a lightness algorithm from examples and that a similar

technique may be used for other problems in early vision. For the lightness problem,

a two-layer BP net does not perform significantly better than the linear estimator

under several different conditions, when : a) the input data is the sum of illumination

and reflectance (or the logarithm of the product); b) the input data is the product of

illumination and reflectance; c) the spatial dependency of the illumination is linear;

and d) the spatial dependency of the illumination is sinusoidal. The BP net performs

slightly worse than the optimal polynomial estimator of order two on input data with

linear illumination gradients. The addition of nonlinear hidden units does not seem

to improve performance, suggesting that compression of the input into a smaller set

of important features would only degrade the performance of the linear operator.

All three operators synthesized here provide good solutions to the lightness prob-

lem. Yet as discussed in Chapter 3, lightness solutions cannot solve the full problem

of color computation. Lightness operators by necessity will confuse shadows and spec-

ularities with reflectance edges if the former cause sufficiently sharp image irradiance

changes. Figure 5.9 illustrates how the lightness operator synthesized by optimal

linear estimation acts on a shadow. The Mondrian in Figure 5.9(a) is constructed in

the same way as the Mondrian in Figure 5.2, with one linear illumination gradient

applied uniformly to each column, except that each pixel value in the right half of the

image is offset by a fixed amount. This simulates a shadow that satisfies the three
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Figure 5.9: (a) Input Mondrian with vertical linear gradient of illumination extending
across entire image. "Shadow" edge runs vertically down center of image. (b) Output
of linear operator (shown in Figure 5.3) acting on (a). (c) Input, Mondrian with
horizontal linear gradient of illumination extending across entire image. "Shadow"
edge runs horizontally across center of image. (d) Output of linear operator (shown
ir Figure 5.3) acting on (c). Notice that the operator interprets the shadow as a
reflectance edge.
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Figure 5.10: (a) Koffka Ring with midline drawn down center of uniform grey annulus
against bipartite background. Le-f half of annulus appears lighter than right half. (b)
Horizontal slice of (a) through center of ring. (c) Koffka Ring without midline drawn
down center of annulus. Annulus now appears to be uniform grey throughout. (d)
Horizontal slice of (c) through center of ring.

107



L54.79TOM

-1W .364494

C. d.

149.97436

---- 319

F164.61

Figure 5.11: The linear operator gives the same results on Koffka Rings with (a) and
without (c) inidlines.
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assumptions listed in Section 3.5: image irradiances in one wavelength channel scale

in the same way everywhere across the shadow edge. (The assumptions in Chapter

3 also require that the ratios of image irradiances in distinct wavelength channels

do not change across any patch that straddles the shadow edge, but for lightness

algorithms this is not relevant.) Because the lightness operator is a one-dimensional

operator that acts on each column independently, normalizing each separately, the

shadow edge is effectively eliminated. But when the shadow edge runs counter to the

columns, the lightness operator interprets it as a reflectance edge. Globally, though,

the output of the lightness operator resembles the desired output more than it does

the input. Patches that straddle the shadow edge are assigned inaccurate reflectances

because the central value seen by the lightness filter (see Figure 5.3) changes greatly

across the edge, while the surround changes little. The reflectances of patches far

from the shadow edge, on the other hand, are quite accurately represented, because

both center and surround values change little across them.

It is important to note, though, that in one sense the lightness operator does

reproduce human perception. That is, we sense the image irradiance change across a

shadow edge but perceive it as a shadow - we do not discount it completely. Acting on

each of three wavelength channel images independently, the lightness operator would

assign the same hue to different pieces of a single patch on either side of a shadow edge,

but different luminances. (That is, the ratios of lightnesses in the distinct wavelength

channels would remain the same across the shadow, but the sum of lightnesses would

not.) We would also see that the patch has a constant hue and a changing brightness,

but we would attribute the change in brightness to the effective illumination, not to

the surface reflectance. One of the cues we might use in determining the cause of the

shadow edge might well be the fact that hue does not change across it. This is the

cue that segmentation algorithms use. Lightness algorithms may therefore provide

an adequate model for the early stages of human perception.

Not only can lightness operators not distinguish between image irradiance changes

due to different causes but also they can not use image irradiance changes to influence
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color computation in a nonlinear way. Take, for example, the Koffka Ring [54]: a

uniform gray annulus against a bipartite background (Figure 5.10(a)) appears to

split into two halves of different lightnesses when the midline between the light and

dark halves of the background is drawn across the annulus (Figure 5.10(b)). The

estimated linear operator of Figure 5.3(a) acting on the Koffka Ring of Figure 5.10(a)

reproduces our perception by assigning a lower output reflectance to the left half of the

annulus (which appears darker to us) than to the right half. (Note that the operator

achieves this by subtracting a non-existent illumination gradient from the input image

irradiance. How it does so is apparent from the shape of the filter in Figure 5.3(a):

the surround seen by the operator changes linearly across the Koffka annulus while

the central value does not. It is also interesting to note that the operator effectively

solves the Poisson equation (Equation 4.2) within a bounded region. Since a linear

gradient is invisible to the V 2 operator, it may be added to any solution to the Poisson

equation to satisfy the boundary conditions. Arend [3] demonstrates that the human

visual system sometimes sees such "illusory lightness gradients.") Yet the operator

gives this brightness contrast effect whether or not the rnidline is drawn across the

annulus (Figure 5.11). Because the operator can perform only a linear transformation

between the input and output images, it is not surprising that the addition of the

midline in the input evokes so little change in the output. These results demonstrate

that the linear operator alone cannot compute lightness in all worlds and suggest

that an additional operator might be necessary to mark and guide it within bounded

regions. Chapter 6 addresses the question of how a lightness-type operator might

work in concert with luminance-edge finder.
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Chapter 6

Segmentation Algorithms

To rely on color as a cue in recognizing objects, a visual system must have at least

approximate color constancy. Otherwise it might ascribe different characteristics to

the same object under different fights: a ripe yellow banana in the kitchen could

become a raw green one in a forest glade. But the first step in using color for recog-

nition, segmenting the scene into regions with distinct surface reflectance properties,

does not require color constancy. In this crucial step color serves simply as a means

of distinguishing one object from another in a given scene. Color differences, which

mark material boundaries, are essential, while absolute color values are not. The goal

of segmentation algorithms is to achieve this first step toward object recognition by

marking discontinuities in the surface spectral reflectance function, or in other words,

by finding color edges that mark material boundaries.

The segmentation algorithms introduced in this chapter, unlike lightness algo-

rithms, start with triplets of input values that are transformations of the image irra-

diance values in the original sensor channels. Two of the transformed values ("hue"

values) are analogous to the CIE chromaticity coordinates x and y in that each rep-

resents the irradiance in one channel divided by the sum of the irradiances in the

three channels; the third, analogous to the tristimulus luminance value Y, is given

by the sum of the three irradiances. Under the single source assumption the hue

values change across space only when the surface reflectance changes, except when
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specularities are present. Edges in the images defined by the hue values are localized

and enhanced with the help of luminance edges. The color labels provided by the

transformed input values are then smoothed and spread uniformly across demarcated

regions. Because the luminance edges block the spreading of color values, this process

mimics the filling-in phenomenon described in Chapte- 2 and reproduces the effects

seen in the Koffka Ring discussed in Chapter 5.

6.1 Color Labels

i
a. b.

Figure 6.1: (a) A simulated sphere with uniform surface reflectance illuminated by a
point source. This is the luminance image, in which grey levels correspond to the sum
of red, green, and blue image intensity values. (b) Horizontal slice through center of
specularity, starting at the arrow marked in (a).

Lightness algorithms identify all sharp changes in the image irradiance (irradiance

edges) as reflectance edges, and hence as material boundaries. In large part, this is

because the image irradiance signal on which they operate is given in three indepen-

dent broad band spectral channels. If they were provided instead with the signal

obtained by taking the difference (or ratio) of the signals in two of the orginal spec-

tral channels, under certain conditions many of the confusing irradiance edges would
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Figure 6.2: (a) Hue image of sphere in Figure 6.1: grey levels now correspond to hue
values, which are the ratio of red and green image intensity values. (b) Horizontal
slice through center of specularity at arrow. Note that although the slow changes in
luminance due to shading disappear, the specularity is still visible.

already be eliminated in the input. Thus the choice of channel in which lightness is

computed can significantly alter the color labels computed.

Ideally, one would like to perform a simple transformation on the original spectral

channels, in which the responses are (S', S', S'), to create new channels, in which

the responses are, say, (Ha, Hb, He), so that all reflectance edges but no other type of

irradiance edge are represented as edges in the H image and distinct H triplets label

distinct surface reflectance properties. Then all a color algorithm need do is detect

and enhance the edges in H. Rubin and Richards [98] employ the sign of the ratio of

the difference of S' and Si to the sum [(S i - Sj)/(S' + S')] to label materials within

regions marked by a previous segmentation step (see Section 3.5). The numerator of

the ratio is notably like the signal transmitted by physiological color-opponent cells.

Here we choose similar input image values by starting with Equation 3.13 and the

single source assumption.

The single source assumption says that all objects in a scene are illuminated
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by light with the same chromaticity. This assumption requires that the effective

irradiance in Equation 3.13 separate into the product of two terms:

E'(r.) = k'E(r.) (6.1)

which follows from

E(A,r,) = E(r.)k(A)

so that

S'(r) = kE(r.)pt (r,). (6.2)

In other words, the single source assumption states that the effective irradiance

varies in the same way across space for each spectral c]- - nnel. In general, the assump-

tion is valid when there is a single light source; in particular, illumination changes due

to shadows, shading and surface orientation changes usually affect all wavelengths in

the same way, whereas those due to specularities do not. The assumption is clearly

violated if there are two spatially and spectrally distinct fight sources.1

Under the single source assumption, the spatially dependent term of the effective

irradiance E(r) will factor out in any ratio of the signals in two distinct channels:

hij = S' I/Sj  kIE(rl)pt(r) kp'(r) (6.3)S kJE(r)pj(r) - kJp1 (r)(

Thus discontinuities in hij will mark discontinuities in the surface spectral reflectance

function, or material boundaries. (Here the superscript i is used to refer to the sensor

responses S' as the product of E and p', as derived in Equation 3.13, rather than

the log of the product, as derived in Equation 3.18. The effective irradiance similarly

disappears in the difference h, = SO' - S", where SO is the log of the sensor response.

See Section 8.2.2 for a discussion of the physiological relevance of how the hue index

is written.)

'RIamachandran[96] demonstrates that we appear to rely on a similar single source assumption
(without reference to the spatial varation of the source color) in making judgments of 3-D shape
from shading information.
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Conversely, image regions across which hi is constant signify uniform surfaces

of single materials. Synthetic images generated with standard computer graphics

algorithms (using, for example, the Phong reflectance model) behave in this way:

illumination changes due to shading, shadows, and surface curvature are factored out

in the ratio hj, while those due to specular reflections are not. Figure 6.1 shows the

luminance image (I = I" + P + b, where Ir is the image intensity in the red channel,

J9 the green, and b the blue) of a sphere with a uniform body reflectance function

and a non-zero specular reflectance function simulating that of an inhomogeneous

material. A horizontal slice through the center of the specularity reveals the smooth,

slow changes in the irradiance function due to illumination gradients on the three-

dimensional surface, to be compared with the sharp, fast changes due to specular

reflections.

hi 1, on the other hand, remains constant throughout the regions of smooth shad-

ing on the sphere, as illustrated in the hue image of the sphere (Figure 6.2). The hue

image depicts the ratio Ir/P at each pixel. As the horizontal slice in Figure 6.2(b)

demonstrates, hij changes significantly across specularities. Thus, for non-Lambertian

surfaces, changes in h,, alone could not be used reliably to indicate material bound-

aries.

For Lambertian surfaces under single light sources, though, the ratio hij is a good

candidate for an input image value in which edges mark material boundaries. The

desired triplet of images defined by (H', Hb, Hc) may be formed by taking the three

distinct pairwise combinations of the indices ij and k. The segmentation problem

may then be tackled by marking regions of constant hi,, or, equivalently, by finding

contours of discontinuities in hij.

In practice, real hi, data are noisy and unreliable and therefore do not permit

segmentation so easily. This is because hij is the quotient of numbers that are not

only noisy themselves (see Figure 6.2) but also, at least for biological photosensor

spectral sensitivities, very close to one another.

The first step toward constructing a robust segmentation algorithm is thus to
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Figure 6.3: (a.) For the cooperative and winner-take-all algorithms, the stack of hue
planes into which the hue values are initially loaded. (b.) The excitatory neighbor-
hood of the x,y-th pixel in one hue plane.

choose more stable hue values that still exhibit the properties of hi, defined above.

By analogy with the CIE chromaticity coordinates x and y and the tristimulus value

Y we choose the values u, v and w such that

I r

Ir + 1p + Pb

jg
W I + Ig + Ib

w= I t + 1p + Ib

where u and v are the new hue values and w is the luminance value. Whereas the

ratio Ir/I2 hovers near 1 for most images, u and v range more widely between 0

and 1. The new values are still noisy though and do not provide clean segmentation

without further processing.
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Figure 6.4: (a) 75x75 pixel region of the red channel image of a Mondrian-textured
sphere with a specular surface illuminated by a point light source. (b) Vertical slice
through center of specularity. (c)"u" [I"/(Ir + I + Ib)] image of (a). (d) "v" [Ig/(Ir +
19 + lb)] image of (a).
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Figure 6.5: Images obtained after (a) five and (b) ten iterations of the winner-take-
all scheme on the "v" image, using the Canny edges of the intensity image (see
Figure 6.8(b)) as edge input. Note that even after ten iterations, the regions within
intensity edges still are not smooth, because the initial discretization into bins cannot
be overcome. (c) Vertical slice through (a), showing clearly the discrete levels.

6.2 The Role of Luminance Edges

The next step is therefore to find a method that enhances discontinuities in the hue

values, smoothes the noise and fills in data where they are unreliable. Reasoning from

the implications of many psychophysical phenomena, luminance edges are a natural

choice for help in enhancing hue discontinuities. For example, isoluminant boundaries

are fuzzy; high contrast luminance edges can capture and contain blobs of color even

if they do not fall perfectly within the edges, as in impressionistic paintings or color

cartoons; luminance edges block the filling-in of color in stabilized image experiments;

and, as in the Koffka Ring, luminance edges can create apparent hue discontinuities.

Except in artificial isoluminant images, hue discontinuities rarely occur in the ab-

sence of discontinuities in luminance. Therefore the hue edges in an image should

form a subset of the set of luminance edges, depending on the parameters used in de-

tecting edges. In the algorithms below, we use luminance edges to activate colocalized
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hue edges and to block the spreading of uniform hue values. 2

6.3 The MRF Approach

One approach to the segmentation problem is to regularize the data using Markov

Random Field (MRF) techniques. Similar techniques have been exploited by several

authors (Poggio et. al., [94] Blake and Zisserman [8], Geman and Geman, [32] Mar-

roquin [77] and Geiger and Girosi [31]) to solve other surface reconstruction problems

in early vision in which the data supplied are sparse and noisy, and where the surface

may be defined, for example, by depth, color or motion. MRFs specify the proba-

bility distribution of solutions to the surface reconstruction problem by providing an

energy associated with each possible solution. The energy function is dependent only

on local interactions within the reconstructed surface. That is, the probability that a

given point on the surface has a given value - say, hue - is determined solely by the

hues assigned to its neighbors on the surface.

Formally, the prior probability of a solution field f is given by

P(f) = (1/Z)e-E()/T

where Z is a normalizing constant, E(f) is the energy of the field f and T is the

"temperature," a constant. The energy function E(f) is the sum of contributions

from each neighborhood in the surface, for which the local energy function has the

same form. It typically includes a term that penalizes reconstructed values far from

the original data and those far from neighboring values, when a continuous surface

is desired. For surfaces in which discontinuities are allowed, the energy function may

include a term representing the presence or absence of discontinuities which break the

continuity constraint at specific locations. (Geman and Geman [32] first introduced
2Note that Land's original retinex algorithm [61], which thresholds and sums the differences in

image irradiance between adjacent points along many paths, accounts for the contribution of edges
to color, without introducing a separate luminance edge detector.
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this term as a line process defined on the lattice dual to f; see Geiger and Girosi [31]

for an alternative construction.)

Poggio et. al. [94] derive an energy function E(f) in which the reconstructed hue

values u and v are required to be piecewise smooth and close to the input hue values.

Hue edges that colocalize with luminance edges are enhanced by a term that couples

the probability of the two. This formulation leads to a stochastic algorithm, a form

of which has been implemented on real images [94].

6.4 Cooperative Color Algorithms

The stochastic algorithm based on the MRF formulation selects the most likely surface

from a random series of candidates, a procedure that is computationally expensive

and biologically unlikely. A deterministic algorithm would in many cases be more

efficient and biologically plausible. A deterministic approximation to the stochastic

algorithm based on the MRF formulation is explored in the following section. In this

section we examine an alternative to the MRF approach by drawing an analogy with

the cooperative stereo network of Marr and Poggio [75].

We start with the observation that if we require hue to be piecewise constant,

or less restrictively, piecewise smooth, and assume that the visual system we are

simulating can distinguish only a finite set of discrete hues, then the problem of

assigning hues to surface points becomes analogous to that of assigning depths. (As

other authors have noted, see e.g. Blake and Zisserman [8], similar analogies can

be drawn between many problems in early vision.) As in the problem of computing

depth from binocular disparity, two constraints apply: uniqueness - each surface point

may be assigned only one hue; and piecewise constancy or continuity - hue values

are constant or at most smoothly varying within edge-bounded regions. As if in a

Mondrian world, here we ask for piecewise constancy, but this constraint proves too

restrictive, as shown below.

To implement these constraints, we construct a cooperative network, a type of
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Hopfield net, that performs similarly to the cooperative stereo network of Marr and

Poggio [75, 76].

We construct a three-dimensional binary array C(x, y, u) corresponding to the

array u(x, y), where x and y are the image spatial coordinates and U labels discrete

hue values in a finite set. The binary array C(x, y, u) is loaded by setting all cells

at (x, y) to 1 for which u(x, y) is within a specified distance from U; otherwise,

C(x,y,u) is set to zero. At each instant in time, each cell C(x,y,u) in the array

receives "excitatory" contributions from cells in the same U layer belonging to its

excitatory neighborhood (see Figure 6.3). It receives "inhibitory" votes from cells

at the same (x,y) position but with different U. If the sum of these contributions

exceeds a certain threshold the cell will be active at time t = to + 1; otherwise the

cell will be set to zero.

Thus,

,II, = ,(E ',u'E E(,(,u ) C.,'I',,, - ,E~ ',,u'E (x,y,u)C ,,, ,' + QC.,') (6.4)

where a is a step function that implements the threshold, and E(x, y, u) and I(x, y, u)

are the excitatory and inhibitory neighborhoods of (x, y, u), respectively. The network

enforces local constancy and uniqueness by requiring that only one cell be active at

each (x, y) across all U values.

To incorporate information from brightness edges, we construct a binary map with

"black" and "white" regions corresponding to oppositely signed regions of the function

V 2 G * w(z, y), where G is a Gaussian kernel and w(z, y) is the image luminance.

In Equation(6.1), the summation over E is then restricted to black cells if (x,y) is

black, and to white cells if (x, y) is white.

Although the cooperative color network produces reasonably good results on syn-

thetic images, there are a number of arguments against using it either as a model for

biological color vision or as a machine vision algorithm. First, the number of itera-

tions required to achieve a stable configuration of hues and hue boundaries is high.

121



Biological visual systems cannot rely on such a time-consuming process to segment

scenes into regions of constant colors. Second, the initial partitioning of hue values

into discrete bins is neither straightforward computationally nor plausible biologi-

cally. Noisy values from a single region that should be assigned a constant hue will

be loaded initially into a different group of bins at each (x, y). After many iterations

on the cooperative network, the "uniform" region may split up into islands of similar

but distinct hue values (see Figure 6.5).

The first problem may be solved by implementing a one-pass winner-take-all

scheme on the network. For each pixel for each hue plane, a local processor sums

the binary votes from all pixels in its excitatory neighborhood. A second process' r

scans the hue planes and assigns to each (x, y) the hue of the hue plane with the most

votes at that pixel. This algorithm is much quicker than the first but still suffers from

side-effects of the initial discretization of hue values (see Figures 6.4 and 6.5). Other

methods of loading the bins obviate this problem, but require pre-processing of the

image that is both inefficient and biologically unlikely.

6.5 A Segmentation Algorithm

To avoid the problems inherent in the above approaches, we return to the MRF

formulation, which provides a rigorous foundation for a simple algorithm. To avoid

small step changes in hue across a uniform surface we relax the requirement for

piecewise constancy and instead require only that hue be piecewise smooth. This

obviates the need for specifying a finite range of allowed hue values. Although in

principle the hue values may now vary smoothly within an infinite range across a

scene, in practice they will not vary much, depending on how the smoothness criterion

is implemented.

To implement the smoothness criterion we incorporate it into an energy function

that the reconstructed surface should minimize. The full energy function for the point

(z,y) is:
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E-= (- - uX,)' + aEN-s + - E(.,)

zyENz

where uO is the initial hue data, ii, is the reconstructed hue, N.,, is the local neigh-

borhood of pixel (x, y), EN , is the term representing the smoothness criterion and

E(l) is the energy of the line process that marks hue discontinuities (including, if

desired, interaction with luminance discontinuities).

For the deterministic approximation, we incorporate the term due to the line

process into the term EN-Y and exclude the first term. Then ENY becomes equal to

the following function:

(1 - d. +i,y)V(u,,y, u,+I,,) + (1 - d=,y+I)V(ux,y, u,,+)

+( - + (1 - d, 1 1 i)V(u,,, u

where V(ul, u 2) = V(uI - u 2) is a quadratic potential around 0 and constant for

[UI - u2 1 above a certain value (see Figure 6.6). (This potential is equivalent to the
"weak membrane" energy discussed by Blake and Zisserman [8].)

The values dy are explicitly provided at each pixel (x, y) by edge detection on

the hue and luminance images and are either 0 or 1 depending on the absence or

presence of an edge at pixel (x, y) as described below. Thus, if a valid edge exists

at a neighboring pixel (i.e., d = 1), the neighborhood interaction term goes to zero

and the reconstructed value is exempted from the smoothness criterion. We derive

an iterative algorithm by using gradient descent to solve for the stationary value of

u. Successive changes in u are governed by the equation

du/dt OEN-Y

For a = 1/10, solving for the value of u at discrete times t yields the following

expression:
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U t+l = I ~ -U t >
X= n(Nt) 1,E I4)'m= <U>N

i,rnEN(u,',u)

where N(utX) is the set of n(N t ) pixels among the next neighbors of x, y that differ

from u t by less than a specified amount and are not crossed by an edge in the edge

map(s) (on the assumption that the pixel (x,y) itself does not belong to an edge).

n(N t ) = 5 if none of the nearest neighbors are crossed by an edge.

V(U,. 2

-k 0 +k

Figure 6.6: The energy potential that implements the piecewise smoothness con-
straint.

The result is an algorithm that simply replaces the value of each pixel in the hue

image with the average of its local surround, iterating many times over the whole

image. The algorithm takes as input the hue image (either the u-image or the v-

image) and one or two edge images, either luminance edges alone, or luminance edges

plus u or v edges, or u edges plus v edges. The edge images are obtained by performing

Canny edge detection or by using a thresholded directional first derivative. On each

iteration, the value at each pixel in the hue image is replaced by the average of its

value and those in its contributing neighborhood (see Figure 6.7b). A neighboring

pixel is allowed to contribute if (i) it is one of the four pixels sharing a full border

124



with the central pixel (see Figure 6.7a) (ii) it shares the same edge label with the

central pixel in all input edge images (see Figure 6.7c) (iii) its value is non-zero and

(iv) its value is within a set range of the central pixel value. The last requirement

simply reinforces the edge label requirement when a hue image serves as an input

edge image - the edge label requirement allows only those pixels that lie on the same

side of an edge to be averaged, while the other insures that only those pixels with

similar hues are averaged.

II_:1

a b C

Figure 6.7: (a) For the averaging algorithm, the contributing neighborhood of the x,y-
th pixel. (b) In the first iteration, each black pixel is set to the average of the values
at it and the four neighboring white pixels (provided they share the same edge label
- see (c) - and fall within the range for similar pixel values). In the second iteration,
each white pixel is set to the average of the value at it and the four neighboring (newly
averaged) black pixels. Successive iterations repeat this pattern. (c) An edge input
image; all pixels lying within a closed edge are labeled "1", while all pixels lying on an
edge are labeled "0." Only pixels with the same edge label are allowed to contribute
to the same neighborhood.

Because the original data are used only as initial values for the iteration scheme,

we expect that the algorithm will provide asymptotically piecewise constant regions

bounded by discontinuities. If the term requiring closeness to the original data is

restored to the energy function, then the iteration rule becomes:
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a. b.

Figure 6.8: (a) Canny edges of the small intensity image using the default sigma.
(b) Canny edges of the small intensity image using sigma = 0.5. Note that at this
resolution the edge detector easily finds the borders of the specularity.

= +I< U >N k.',-U0

where u° are the input hue data. The resulting "surface" is a generalized spline.

The local averaging smoothes noise in the hue values and spreads uniform hues

across regions marked by the edge inputs. On images with shading but without

strong specularities, the algorithm performs a clean segmentation into regions of

different hues. Figure 6.9 illustrates the result of 1000 iterations of the algorithm on

a synthetic image of a Mondrian-textured sphere with a specular surface generated

using the Phong reflectance model. Figures 6.10 and 6.11 illustrate the performance

of the algorithm on a natural image obtained with a CCD color camera.

This simple segmentation network also mimics our perception of the Koffka Ring.

We replicate the "illusion" in the following way. The Koffka Ring is filtered through

the lightness filter shown in Figure 5.3(a). (For black-and-white images this step

replaces the operation of obtaining u and v: in both cases the goal is to eliminate

spatial gradients in the effective illumination.) The filtered Koffka Ring is then fed to

the averaging network together with its brightness edges. When in the input image
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Figure 6.9: (a) The image obtained after 1000 iterations of the averaging network on
the image in Figure 6.4(d), using as edge input the Canny edges of the luminance
image shown in Figure 6.8(b). The edge input is aided by a threshold on differences
in the v image which allows only similar v values to be averaged. (b) Horizontal slice
through center of specularity in (a). Note that the specularity appears as a smooth
patch with a slightly different v-value in the center of another patch.

the boundary between the two parts of the background continues across the annulus,

in the output image (after 2000 iterations of the averaging network) the annulus splits

into two semi-annuli of different lightnesses in the output image, dark grey against

the white half, light grey against the black half (see Figure 6.12). When the boundary

does not continue across the annulus, the annulus color relaxes to a uniform grey, but

only after approximately 20 times as many iterations.

The averaging scheme finds constant hue regions urder the single source assump-

tion in a Lambertian world. Often the real world complies with these constraints, as

in the image in Figure 6.10. Although a strong highlight may originate an edge that

could then "break" the averaging operation, the specular reflections in the teddy-bear

image are weak enough that they average out and disappear from the smoothed hue
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Figure 6.10: (a) Digitized red-channel image of natural scene (teddy bear with jacket)
obtained with CCD camera. (b) Canny edges obtained using the default sigma of
intensity image of same scene.
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Figure 6.11: (a) Eight-bit "U" image of image in Figure 6.10. (b) Vertical slice
through (a) at arrow. (c) Image obtained after 500 iterations of averaging scheme
on (a), using intensity image and (a) as edge inputs. The dips at the two extremes
correspond to the blanket; the small peak in the center corresponds to the bow tie.
(d) Vertical slice through (c) at arrow. Note that the noise is smoothed by averaging
while discontinuities in hue are preserved.
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Figure 6.12: (a) Output of linear estimator obtained as described in Chapter 5 acting
on Koffka Ring with midline. (b) Horizontal slice through center of (a). (c) Output of
averaging algorithm after 2000 iterations, acting on (a). (d) Horizontal slice through
center of (b).
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image (see Figure 6.11). The iterative averaging scheme completely eliminates the

remaining gradients in hue.

Yet a robust segmentation algorithm for the real world will clearly require some

method for identifying irradiance edges induced by specular reflections. This method

may well entail specialized routines and higher-level knowledge. For example, the

interpretation of virtually identical local image intensity changes may vary according

to the global context. In one image a bright white line against a dark background

may be a painted stripe on a piece of cloth; in another, it might be an extended

specularity on plastic. Furthermore, positive identification of the physical cause of

an edge may require interaction between several visual modules. Specular reflections,

for example, vary widely in magnitude with the angle of view and thus image motion

due to eye movements may provide valuable cues for their detection. Despite its

limitations, though, this simple segmentation algorithm still captures some of the

integral features of human vision.
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Chapter 7

Cues to the Color of the
Illuminant

The methods for recovering constant colors discussed in chapter 3 also recover, directly

or indirectly, the color of the illuminant. (Conversely, a method that correctly recovers

the illuminant color can achieve perfect color constancy, at least for nonmetameric

objects.) Like the constant object colors they recover, the illuminant color is an

estimate dependent on the assumptions that each method employs to make equation

(3.18) (the image irradiance equation) tractable. Hence one way to test a method's

accuracy and flexibility is to examine the illuminant colors it predicts under different

conditions. Similarly, one way to test whether a method closely mimics the one

that humans use is to compare the illuminant colors it estimates with those that

humans perceive under the same conditions. What one really tests by comparing

the outputs of two methods - an explicit machine vision algorithm versus a hidden

biological mechanism - is whether they rely on the same assumptions about the

physical world, not whether they use identical operations in stepping from light signal

to solution. If we rely on the grey-world assumption, for example, then our perception

of the illuminant color will vary with the bias in reflectance distributions of scenes,

as does the estimate obtained by lightness algorithms that set the average to grey.

On the other hand, if we are able to use information from specular reflections as

the chromaticity convergence algorithm does, then when sufficient specularities are
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present we too will accurately estimate the illuminant color even when the surface

reflectance distribution is skewed.'

These predictions make two critical assumptions: (1) humans are able to judge the

illuminant color and (2) we use the same computation both to estimate the illuminant

color and to derive constant object colors. Can humans perceive the color of the light

source without "looking" directly at it? If we do not, and yet we do perceive roughly

constant colors of objects, then intermediate stages of the color computation must

be lost to consciousness. Yet if we are capable of judging the illuminant color, still

it does not follow that we do so by accessing the same computation for computing

constant colors.

In fact, experience and experiments tell us that we are capable of judging illumi-

nant color. At sunset, we sense a reddish glow to things and call it the color of the

light; under indoor incandescent lights, we see the source as yellow while simultane-

ously recognizing apples as red and eggplants as purple. Yet in many circumstances,

we would not be correct in assuming the illuminant color to be the same as that of the

primary light source we see. In a blue-walled room, with a blue rug underfoot, and

blue furniture about, we correctly sense the illuminant color as bluish, despite the

greenness of the sunlight - reflected from leaves and grass - pouring in through the

window. Although the primary source is the sun, interreflections between the walls,

the furniture and other objects insure that the incident light striking any object in

the room is far more biased toward blue. As Evans said, we live under strange lights

largely determined by our interior decorations: "When the light reaching a particular

object is to be evaluated, the light reaching it from all the reflecting surfaces in its

neighborhood has to be taken into account (p.54)" ... "...If sunlight enters the window

and falls on a bright red carpet, all other objects in the room are lighted by red light

of the color of the carpet (p.81)"[30].

Experiments performed by Arend and Reeves [4] indicate that illuminant differ-

'The work described in this chapter was done in collaboration with Hsien-Che Lee and Heinrich
H. B6iithoff.
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ences between otherwise identical scenes (in their experiments, computer-simulated

two-dimensional Mondrians) are readily visible even without reference surfaces that

provide conclusive cues. Furthermore, their results indicate that observers can use

cues to the illuminant color from reference surfaces to improve color constancy, sug-

gesting that the two computations, if not the same, are strongly linked.

These comments suggest that an experiment in which human observers judge the

illuminant color on different scenes might reveal something about the constraints

on color constancy. This chapter reports on such an experiment. To insure readily

interpretable results, we presented observers with simple scenes that were nonetheless

complex enough to test whether their perceptions agreed with predictions from the

computational methods described above. Each scene (presented on a computer-driven

color CRT monitor) consisted of a single smooth-surfaced Mondrian-textured sphere

illuminated by a single point source. This choice of scene eliminated confusion caused

by interreflections, while still providing a range of surface colors. The sphere surface

was either specular or non-specular, simulated by different reflectance functions. For

some specular spheres, the Mondrian reflectance distribution was biased away from

grey, while the source color was differently biased, allowing the grey world assumption

and information from specular reflections to come into direct conflict.

7.1 Methods

Seven observers (5 males, 2 females; age range 11 -34) participated in the experiments

reported here. Observers were screened for color vision deficits using the Ishihara

protanopic and deuteranopic confusion plates and the Farnsworth F2 Tritan plate.

(One observer (ENJ) demonstrated a mild protanopia but was nonetheless included

in the experiment; all others tested normal - see results.)

The observer viewed a series of computer-generated images displayed on a cal-

ibrated color CRT monitor in an otherwise completely dark room. He or she was

positioned in a chin-rest at a fixed viewing distance (104 cm) from the monitor. The
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observer's line of sight was fixed at a perpendicular angle to the screen. In each image

the Mondrian-textured sphere (see Figure 7.1) subtended approximately 4.5 degrees

in the center of the observer's visual field. The simulated light source appeared to

be suspended between the screen and observer above and to the right of the sphere.

Beneath the sphere, separated by .75 degree of black screen, was a rectangular palette

of 256 colors, representing a section of the CIE chromaticity diagram that includes

the CIE daylight curve (see Figure 7.2).

Figure 7.1: Red channel image of a Mondrian-textured sphere, with specularity.

Observers were asked to choose the color of the perceived illuminant on the sphere
as the color that white paper in the void would be under the same illuminant. The

white paper was simulated by a small patch at the edge of the display, approximately

2 degrees distant from the closest border of sphere. The observer selected its color

by clicking on choices in the palette below the sphere. In each trial, the sphere
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Figure 7.2: Palette colors on CIE chromaticity diagram. The CIE daylight curve runs
longitudinally through the center of the band. R, G and B mark the loci of red, green
and blue monitor phosphors.
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was randomly selected from a large set generated as described below; its illuminant

color, chosen as described below, was one of five colors on the palette.2 Observers were

instructed to move their gaze across the entire screen when each new image appeared,

to maintain a constant state of adaptation. Successive trials were separated in time by

approximately 15 seconds to reduce the effects of successive color contrast. Although

there was no time limit on the choice, observers were asked to give as instantaneous a

reaction as possible. They received no feedback during the experiment. Afterwards,

observers were asked to rate their confidence in their choices and to speculate on the

methods they employed to judge illuminant color.

The spheres were generated using the NIR model (see section 3.2) to combine

interface and body reflection components and the Phong model [90] for the geometry

of the interface reflection. 2-D Mondrian reflectance images were projected onto 3-D

spheres of fixed radius. The spheres were then illuminated by a point light source

at a fixed position and distance and by ambient fight of uniform color and intensity.

The three gun values for pixel (x,y) of the final image, Ih(x,y), Ig(x,y) and Ib(X,y) 3 ,

were given by the following equations:

Ir(x,y) = kdE-[pr(f(n, s,v) + k.) + p~g(h, v, n,s)]

19(x,y) = kdE[pg(f(n,s,v) + k.) + pog(h,v, n, s)]

Ib(x, y) = kdEb[pb(f(n, s, v) + k.) + p.g(h, v, n, s)J.

Pixel (x, y) is the projection of the point p, on the sphere characterized by surface

normal n. s is the vector from the surface point p,, to the source and v is the

vector from p,, to the viewer. h is the vector in the direction of the perfect specular

reflection at p,,. In the first term in the square brackets, pf(n, s, v) represents the
2To minimize the difficulty of the task, the palette colors were chosen from an isoluminant plane

of CIE chromaticity space, allowing the observer only two degrees of freedom of choice in illuminant
color: hue and saturation. Observers were instructed to ignore, as much as possible, any variations
in brightness amongst the images.

3Note that in this computer-simulated scene, image irradiance and scene radiance are the same,
both specified by the gun values at each pixel.
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body reflection component, where pi is the body reflectance factor of the sphere

surface in the ith channel. (The body reflectance factors pi are constant across each

patch of the Mondrian image.) f(n,s,v) is proportional to (n . s)/(s 2 . v2). The

specular reflection component is determined by the second term, in which p, is the

specular reflectance factor and g(h, v, n, s) is proportional to (h . v)m, with m = 40.

(This is the Phong approximation to the true form of the specular reflection term.)

The form of g is chosen to simulate an inhomogeneous material with a largely smooth

surface - e.g. a painted surface or plastic - in which the specular reflection tends to

take on the illuminant color. A fixed amount of ambient light was added at each pixel,

its color determined by the body reflection component (E . pi) and its magnitude set

by the scaling factor ka to be a small percentage (< 10) of the minimum irradiance

in the final image.

Nine 400x400 pixel Mondrian images were generated, each with roughly 200

patches. In each subset of three Mondrians, the reflectances were randomly cho-

sen from a different distribution. In the set of blue-biased Mondrians the pb values

for each patch were randomly chosen from a uniform distribution between minimum

and maximum values of 35 and 95, while the p9 and PT values varied between 5 and

65. In neutral Mondrians all three reflectance factors varied randomly between 5 and

65, while in yellow-biased Mondrians, p9 and p, varied between 35 and 95 and A&

varied between 5 and 65.

In images with specularities, p, was set to 0.8; in images with body reflection only,

p, was set to 0.0. Source color values E varied between 0 and 1. The constant kd

in the image irradiance equation was set so that final image irradiance values varied

from 0 to 1000. To convert images to an 8-bit format, the maximum value (max)

for each image was then set to 254.5, and all other pixel values scaled by the ratio

254.5/max.

Images were generated on a SUN 3/60, transferred via EtherNet to a Symbolics

3600 Lisp machine, and displayed on a Mitsubishi color monitor hosted by the Lisp

machine. The Symbolics 24-bit color map (which accessed 10-bit DACs on each gun)
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was calibrated so that the 8-bit pixel values produced a linear range of luminosities

for each gun, as measured by a Minolta Luminance Meter.

The spectral energy distributions of the three gun phosphors of the color monitor

were measured using a Tracor multi-channel spectrometer, corrected for the sensitiv-

ity of the Tracor detectors in each wavelength interval. The spectra were interpolated

to 1 nanometer wavelength intervals between 360 and 750 nanometers and normal-

ized to the energy at the peak wavelength. The interpolated, normalized spectra

were integrated with the CIE 1931 7, y and T color-matching functions to give CIE

tristimulus values X, Y and Z. In the calculation of the normalizing factor k10 , the

source spectral energy distribution was set to unity for all wavelengths, so that

kl0 = 100 V(Ai) - 100 1 (A)dA.

From the tristimulus values, the CIE chromaticity values x, y, and z were com-

puted and from them, the matrix for transforming pixel values (r, g, b) into CIE

coordinates (x, y, Y).

The set of colors at a fixed luminance (or fixed tristimulus value Y) given by a

linear combination of the energies of the three phosphors forms a color triangle within

the CIE x, y chromaticity plane. The vertices of the triangle are given by the x, y

chromaticity coordinates of the three phosphors (see Figure 7.4). In the subsequent

analysis, all image parameters and observer choices are first converted from (r, g, b)

values to CIE (x,y) coordinates.

7.1.1 Control Experiment

The control set of images, designed to acquaint the observer with the task and to

obtain an estimate of the observer's response variability, consisted of 6 images in

random order of spheres with untextured, uniform surface reflectances, one pair -
with and without specularities - for each of three illuminants. The observer was told

that each sphere, whether glossy or matte, was white, illuminated by a colored light

source (see Figure 7.3). He or she was asked to select the color that a flat white paper
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would be under the same light source illuminating the sphere. The task, considerably

simplified by the given information that the spheres were white, was reduced almost

to color matching, but still difficult because the shading across the curved surface

of the sphere had to be discounted to make a direct match. It enabled the observer

to practice visualizing the comparison patch as a white paper and selecting its color

with the mouse. The control set was presented twice, at the start and middle of a

2-3 hour session that included the following two experiments.

Figure 7.3: Red channel image of a sphere with uniform reflectance, with specularity.

7.1.2 Experiment I

Experiment I was designed to test whether observers rely on the grey world assump-

tion in judging illuminant color, using images without specularities (p, = 0). Group

I consisted of 9 images generated by randomly combining each of 3 neutral Mondri-
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ans with each of 3 strongly biased light sources [source Ia CIE coordinates, (0.4513

0.4283), source Ib (0.4130 0.3699), source Ic (0.2505 0.2270)]. Group II consisted of

18 images generated from 6 biased Mondrians and the same 3 light sources. Each

image was presented twice for a total of 54 trials. In images generated with neutral

Mondrians, the grey-world estimate of the source color correlated strongly with the

actual source color, whereas in most of the images with biased Mondrians, it did not.

7.1.3 Experiment II

Experiment II was designed to test whether specular reflections influence observers'

perceptions of the illuminant. Images in group I were generated from six Mondrians

(two neutral, four biased) and two weakly biased light sources [source Ha CIE co-

ordinates (.3939, .3805), source Ilb (.3366, .3320)], without specularities (p, = 0.0).

Images in group II were identical to group I except for the addition of specularities

(ps = 0.8). Each of the 12 images in Group I was presented one or two times, while

each of the 12 images in Group II was presented two or three times, yielding 48 trials

total. An additional two images were added to group II, and three to Group I. In

these, the color of one central patch was changed "by hand" in order to increase the

distance between the average-to-grey and normalize-to-white estimates.

7.1.4 Image Parameters

Each image was characterized by 6 or 7 parameters, each a potential guide to the

observer's choice of illuminant color. The first parameter, marked S in Figure 7.4, is

the actual source color. G is the estimate of the source color obtained by averaging

to grey, computed by scaling E by the ratio of the average Mondrian reflectance in

the ith channel (pq") to the maximum reflectance in all channels (pma):

i .. E-.

The average reflectance is taken over all pixels in the Mondrian image (i.e., the

reflectance of each patch is weighted by its area). Note that this estimate is not
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Figure 7.4: Illustration of variability in observer choice. Observer MWR's choice of
source color (points marked by small x) for a yellow-biased Mondrian illuminated by
a pinkish source (source Ia) with specularities. S marks the actual source color, W
the source color obtained by normalizing to white, G the source color obtained by
averaging to grey, I the average image irradiance color, H the image irradiance color
at the peak of the specularity, M the average Mondrian reflectance, and B the color
at the brightest image point. Text in the upper-left hand corner indicates the group
to which the image belongs and the number of trials (in this case three). Text in
the lower right-hand corner indicates the image parameter closest to the observer's
choice; the distance between the observer's choice and the source color, averaged over
all trials of this image; and the image parameters that fall within distance sigma
of the observer's choice, where sigma is the square root of variance of the subject's
choices, averaged over all trials of all images within a group.
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precisely the same as that predicted by Land's retinex theory. The retinex model, as

described in section 4.1.1, would scale E by

log pmax,

where logpi denotes the average of the logarithm of pi taken over the entire image.

I is the average image irradiance, computed by averaging the irradiance values of

the final image pixel by pixel. Thus I is effectively the estimate predicted by Evans'

formulation of the grey-world assumption[30]: to balance color photographs, Evans

scaled the pixel values in the original image so that the final image would average to

grey. This method is based on the assumption that each scene has a random collection

of colors (the grey-world assumption) and that if the illumination is white, the scene

will average to grey.

W is the estimate obtained by normalizing to white, computed by scaling Ei by

the ratio of the maximum Mondrian reflectance factor in the ith channel (p,'a1) to

the maximum reflectance in all channels (p,"X). That is,

Pmaz

So the normalize-to-white estimate of the illuminant in one channel varies propor-

tionately with the highest luminance in that channel.

B is the color of the patch with the highest luminosity. H is the color at the

peak of the specularity in the final image. (Because the light source position and

sphere radius are the same for each image, the point of maximum source radiance is

the same on each sphere whether or not specular reflections are present. This locus

is not always the same as that of the maximum luminance of the final image (B),

which depends also on the reflectances of the patches nearest to the light source.) M

is the average color of the input Mondrian, computed by averaging pixel by pixel.

W should approximate S only when the reflectances of the brightest patches in each

color channel are the same (when the "whites" in each channel are the same). G
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approximates the source color when the average reflectance in each color channel is

the same.

Figure 7.5 illustrates that the illuminant color estimate given by the chromaticity

convergence algorithm is exactly the source color. Note, though, that the convergence

lines are short and therefore provide a relatively weak signal. This is due to the fact

that the specularity, which falls off as cos4 0O, is very concentrated, so that only at the

borders of the specularity does the image irradiance vary slowly enough to create a

spread of chromaticity values along a line. The central region of the specularity regis-

ters as a separate patch, the color of which is a linear combination of the underlying

Mondrian reflectance and the source color. 4

7.2 Results

Figure 7.6 illustrates observer DSC's performance on the control experiment. In (a)

are plotted the results from six trials (two presentations for each of three images)

of uniform-reflectance spheres without specularities; in (b) the same for images with

specularities. In (a) and (b) the choice variability and accuracy are the same. DSC

is a typical observer; some estimated the source color more accurately, others less.

Table 7.1 depicts similar results for all 7 observers. For each observer there is no

significant difference between the average choice variances for control images with and

without specularities (for all there is approximately 50% or greater chance of being

wrong in rejecting the hypothesis that the two variances are equal). Although for two

observers (JK, MWR) the source-choice distance in images without specularities is

approximately one-half that of images with specularities, for neither is the difference

significant (for MWR, a is less than 0.2). 5 Note that, although ENJ's mild color

4The stray dots in the diagram are largely due to quantization noise introduced by the conversion
of real values to 8-bit values in the final image. In the chromaticity diagram of the whole image, the
convergence signal is more difficult to see in the swarm of noise.

5Note that in computing the t-statistic, the source-choice distance variance, obtained by pooling
the source-choice distances from all trials within one group, is used rather than the choice variance.
This is on the assumption that only one parameter, the actual source color, characterizes each image.
Furthermore the observer's task is simply to match that color. Therefore on repeated trials of all
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Figure 7.5: (a) A 75x75 pixel region of the red image of the Mondrian-textured sphere,
including the specularity. (b) Chromaticity convergence diagram of the region, in
which the cross marks the source color. Three short lines clearly intersect at the
cross, providing the source signal.
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blindness might be expected to affect the variability of his choices, it appears not to

when compared with other observers (see Table 7.1 and Figure 7.8).

7.2.1 Experiment I

Table 7.2 summarizes the results from Experiment I (excluding the six trials for

which any image parameter fell outside the range of palette choices, i.e. those of a

blue-biased Mondrian under the bluish illuminant, source Ic). The average distance

between the source (S) and choice (C) is higher for biased Mondrians (Group II)

than for unbiased (Group I), whereas the average distance between the grey-world

estimate (G) and observer choice is lower in Group II than in Group I. The average

variance of the choice remains roughly the same in the two groups. In the data pooled

from all observers, the average distance between S and C in Group I is significantly

lower than that in Group II (c < 0.005). Furthermore, whereas the distance between

C and S is significantly higher than the distance between C and G in Group II (a <

0.005), the two distances are not different from one another in Group I (a >> 0.20).6

These results suggest that for unbiased Mondrians (which uphold the grey-world

assumption), the observer's choice is close to tbe source only because the source is

close to the grey-world estimate. Consequently, for biased Mondrians (which violate

the grey-world assumption), when the source is further away from the grey-world

estimate, (see Table 7.3) the observer's choice is closer to the grey-world estimate

than to the source.

Similarly, for biased Mondrians observer choice is closer to the normalize-to-white

estimate (W) than to the source. In fact, for both groups, observer choices are

roughly equally close to both G and W. This result is not unexpected since, because

images within a group, the source-choice distance should fall in a distribution with a constant mean
and variance. This is not true for images in experiments I and II, as discussed below. Making
this assumption increases the degrees of freedom (d.o.f.) in the t-statistic test here and therefore
increases the confidence in the statement that the mean distances are the same in the two groups.

6To compute the t-statistics for these tests, the variances of the distances (between S and C, and
between C and G) rather than the variance of the choice is used. These variances are only slightly
different from one another, as expected.
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observer image type ave. distance average average F [a t-stat.
(N) source-choice 0 choice '_hice

DSC 1. no spec (3) .020160 .009732 .000095 1.309 1 -0.0985
II. spec (3) .020670 .008507 .000072

ENJ 1. no spec (3) .016644 .018457 .000341 .9893 = 1 0.274
II. spec (3) .019684 .018556 .000344

K I. no spec (3) .019667 .011329 .000128 .2424 < 0.5 -1.148
II. spec (3) .035084 .023009 .000529

MEK I. no spec (3) .016524 .017978 .000323 3.426 < 0.5 -0.508
II. spec (3) .022885 .009713 .000094 1

MISD 1. no spec (3) .020304 .025686 .000660 3.198 =- 0.5 10.742
11. spec (3) .012770 .014364 .000206

MWIR I. no spec (3) .011006 .007805 .000061 .3597 = 0.5 -.970
II. spec (3) .022192 .013014 .000169 1

PWU I. no spec (3) .004207 .007402 .000055 .5254 < 0.5 -0.570
II. spec (3) .006710 .010212 .000104 I

pooled I. no spec (21) .015502 .015410 .000237 1.093 1 -1.221
observers 11. spec (21) .019999 .014738 .000217 1

Table 7.1: Results for control experiment, comparing observer performance on images
with and without specularities. The average source-choice distance is computed by
averaging over all trials of all images within a group (6 total). The average variance
of the choice, which gives a measure of observer response variability, has N-1 degrees
of freedom (d.o.f.), where N is the sum of d.o.f. (= 1) of each sample variance
contributing to the average. Each sample variance is computed for 2 trials of one
image. F is the ratio of a2 (average choice variance for images without specularities) to

H (average choice variance for images with specularities). a is the level at which the
hypothesis or2 - oj may be rejected - e.g. for observer MWR there is approximately
50% chance of being wrong in rejecting the hypothesis. The t-statistic provides a
test of the hypothesis that the average source-choice distance is the same for the two
groups of images. It is computed using the pooled variance from the two groups, with
d.o.f. = (total number of images - 2). Only for observer MWR may the hypothesis

,41 = p i be rejected with a less than 0.2, which is not significant. All other t-statistics
correspond to a approximately 0.4.
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Figure 7.6: Observer DSC's performance on the control experiment: (a) images with-
out specularities; (b) images with specularities. Dots mark actual source color; each
cross connected to a source color marks observer's estimate of it on one trial (two
trials per source).
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average distance between
image group choice and

observer (N) S G W 'choice
DSC I. U (20) .0363 .0355 .0373 .0190

II.B (30) .0405 .0322 .0261 .0257

ENJ I. U (20) .0367 .035 .0375 .0176
II.B (30) .0446 .0236 .0292 .0165

MEK I. U (20) .0421 .0409 .0421 .0243
II.B (29) .0479 .0297 .0314 .0206

MSD I. U (19) _.0383 .037 .0378 11 .0251
SII.B (30) .0452 1 .0299 .0278 11 .0309

PWU I. U (19) __.0237 .0242 1 .0242 .0326
II.B (30) 1.0475 [ .0307 1 .0314 11 .0291

pooled I. U (98) 1.0355 .0346 .0359 .0241
observers II. B (149) [ .0451 .0292 .0292 .0252

Table 7.2: Results for Experiment I, comparing observer performance on images in
Group I (unbiased Mondrians) and GroupIl (biased Mcndrians). N is total number
of trials contributing to average distance between choice and: source (S); grey-world
estimate of illuminant (G); and normalize-to-white estimate (W). achoice computed as
in Table 7.4. Note that if the variance is calculated in a uniform color space such as
Lab, it still does not vary significantly with the source color.
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image group d(S, G) d(S, W)
I. Unbiased 0.0043 0.0030
II.Biased 0.0490 0.0274

Table 7.3: Distances between source and grey-world estimate (G), and between source
and normalize-to-white estimate () for each group (I - unbiased Mondrians; II -
biased Mondrians), averaged over all images within the group.

of the strong bias in sources, G and W tend to cluster together. (S, G, and W are

inseparable on all images in Group I and on almost half in Group II (see Figure 7.10).)

On the six trials for which the distance between G and W was appreciable (images of

yellow-biased Mondrians under the bluish illuminant, source Ic) two subjects (ENJ,

MEK) consistently made choices close to G, one (DSC) consistently chose W, and two

subjects were inconsistent. Figure 7.7 illustrates DSC's choices. Note, though, that

observers would be more accurate if they chose W over G, as the distance between S

and W is lower than the distance between S and W for both groups (see Table 7.3).

Although all observers followed the trend described above, there were slight differ-

ences and peculiarities amongst individual responses. Figure 7.8 illustrates the range

of observer variability, measured on 4 trials of one image in Group I. Figure 7.9 illus-

trates for one observer (PWU) his occasional inexplicable choice of the actual source

color when it was distant from all other image parameters. In this image of a yellow-

biased Mondrian under the bluish illuminant (source Ic), the grey-world estimate of

the source is close to neutral, yet PWU is able to determine the source color as blue,

evidently using other cues. Figure 7.10 illustrates one observer's (MEK's) tendency

to choose sources less saturated than the grey-world estimate predicts.

7.2.2 Experiment II

Whereas in the control experiment, the presence of a specularity influenced nei-

ther the accuracy nor variance of the choice, in Experiment II specularities appeared
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Figure 7.9: Illustration of observer PWU's occasional accuracy of source choice in
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observer image type ave. distance average average F a
(N) source-choice J hoi e 1 2hoiee ( /O )

DSC I. no spec (7) .0399 .020934j .000438 .2655 < 0.2
IL. spec (17) .0490 .040623 .001650 1

JK I. no spec (7) .0541 .025911 .000671 .4029 < .3
11. spec (18) .0588 .040823 .001666 1 1

MSD I. no spec (7) .0478 .038955 .001517 2.242 < 0.2

11. spec (18) .0497 .020615 .000677 _ 0 ]
M1WR I. no spec (7) .0525 1.045936Y.002110 4.217 < 0.05

II. spec (18) .0510 .022384 .00050, 1

PWU I. no spec (7) .0778 .020667 .000427 .3864 < 0.4

_II. spec (18) .0778 .033248 .001105

pooled no spec (35) .0544 .032138 .0010331-.930 m 1
observers II. spec (89) .0573 .033332 .001111 1

Table 7.4: Results for Experiment II, comparing observer performance on images
without specularities (Group I) and with specularities (Group II). The average source-
choice distance is computed by averaging over all images within a group. The average
variance of the choice, which gives a measure of observer response variability, has N-1
degrees of freedom (d.o.f.), where N is the sum of d.o.f. of each sample variance
contributing to the average. Each sample variance is computed for 2-4 presentations
of one image. F is the ratio of a 2 (average choice variance for images without specu-
larities) to aH (average choice variance for images with specularities). a is the level
at which the hypothesis a2 = aH may be rejected - e.g. for observer DSC there is
less than 20% chance of being wrong in rejecting the hypothesis.
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to influence choice variance, increasing it for three observers, decreasing it for two.

For data pooled from all observers, these opposing influences cancel, resulting in no

difference between groups. For all observers, choice variance was higher than in the

control experiment for images both with and without specularities, in part reflecting

the increased difficulty of the task. For all but one observer (PWU), the standard

deviation was approximately 50% or greater of the mean source-choice distance. Fig-

ure 7.4 illustrates this variability for the one observer (MWR) for whom the difference

in variance between the two groups is significant (a less than 0.05).'

As in Experiment I, for pooled observer data here the average distance between

S and C was significantly higher for biased Mondrians than for unbiased Mondrians,

with or without specularities, whereas the distance between S and G was significantly

lower, as illustrated in Table 7.5. Table 7.5 also illustrates that, comparing groups

of like-biased Mondrians, specularities consistently neither improve nor worsen the

choice accuracy (as measured by the average distance between S rd C). Figure 7.11

illustrates the tendency for observers to choose estimates close to G even when spec-

ularities provide conflictmi .,.formation.

Table 7.6 illustrates these results in another way. The correlation coefficient be-

tween the choice and the grey-world estimate (averaged over all images within a group,

using data pooled from all observers) is higher for biased Mondrians (Groups Ib, Ilb)

than for unbiased Mondrians (Group Ia, Ila), and, for biased Mondrians, higher than

the correlation coefficient between choice and source. Because these groups included

images in which G and W were more widely separated than in Experiment I, one could
7Note that the choice variance here is computed in the most conservative way possible. The

difference between groups would be more significant if there were a parameter for which we could
assume that the parameter-choice distance sampled over all images within a group forms a normal
distribution with a single mean and variance. The variance of that parameter-choice distance could
then be used as the choice variance. This would mean presupposing the parameter which guides
the observer's judgment of illuminant color, by assuming that the observer attempts to maintain
a constant (zero or non-zero) distance from the parameter. Instead, we make the less restrictive
and more plausible assumption that the observer's choice forms a normal distribution when sampled
over repeated trials of one image, and that the distributions for different images within a group have
different means but the same variance.
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average distance between
choice and

observer image group (N) S G W choice
DSC Ia. no spec-U (10) .0312 .0317 .0323 .0151

lb. no spec-B (12) .0472 .0310 .0218 .0244
Ila. spec-U (12) .0376 .0406 .0367 .0311
lib. spec-B (19) .0562 .0406 .0396 .0452

JK Ia. no spec-U (10) .0473 .0472 .0435 .0219
1b. no spec-B (12) .0597 .0353 .0342 .0285
Ila. spec-U (12) .0693 .0726 .0672 .0578
IIb. spec-B (20) .0524 .0413 .0409 .0288

MSD Ia. no spec-U (10) .0351 .0375 .0392 .0384
Ib. no spec-B (12) .0585 .0329 .0310 .0394
Ila. spec-U (12) .0329 .0340 .0347 .0313
IlIb. spec-B (20) .0598 .0300 .0336 .0229

MWR Ia. no spec-U (10) .0324 .0341 .0352 .0524
Ib. no spec-B (12) .0692 .0448 .0492 .0404
Ila. spec-U (12) .0268 .0297 .0296 .0250
IIb. spec-B (20) .0655 .0236 .0359 .0209

PWU Ia. no spec-U (10) .0570 .0612 .0595 .0247
Ib. no spec-B (12) .0951 .0341 .0556 .0171
Ila. spec-U (12) .0683 .0693 .0657 .0448
IlIb. spec-B (20) .0836 .0345 .0518 .0256

pooled Ia. no spec-U (50) .0406 .0423 .0419 .0333
observers Ib. no spec-B (70) .0659 .0356 .0384 .0313

Ia. spec-U (50) .0470 .0492 .0468 .0398
Iib. spec-B (99) .0636 .0339 .0404 .0295

Table 7.5: Results for Experiment II, comparing observer performance on images in
Group Ia (unbiased Mondrians, without specularities), Grouplb (biased Mondrians,
without specularities), Group Ila (unbiased Mondrians, with specularities) and Group
Ilb (biased Mondrians, with specularities). N is total number of trials contributing
to average distance between choice and: source (S); grey-world estimate of illuminant
(G); and normalize-to-white estimate (W). oacjwie computed as in Table 7.4.
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correlation coefficient between
choice and I choice-source dist. and

image group S G W d(S, G) d(S, W) d(S, B)
Ia. no spec-U ( .5759 .5763 .5197 .1436 -.1813 -.1119
lb. no spec-B ( .5162 .8459 .8451 .4111 .4916 .1587

Il.spec-U () .6915 .6920 .5875 .1737 -.1755 -.1492
II. spec-B () .5012 .8796 .8645 .5572 .4769 .3371

Table 7.6: Columns 1-3: correlation coefficients between choice and: source (S; grey-
world estimate (G); and normalize-to-white estimate (IM. Columns 4-6: correlation
coefficients between source-choice distance and: distance between source and grey-
world estimate (d(S, G)); distance between source and normalize-to-white estimate
(d(S, G)); and distance between source and most luminous patch (d(S, B)). All dis-
tances and parameters averaged over all images within a group.

have expected to see a difference in the correlation coefficients for the two parameters

if either were preferred as a guide to the illuminant color. In fact, no appreciable

difference exists. If the observer's choice did tend to correlate more strongly with G,

then the choice distance from S [d(C, S)] should be low when the distance of S from

G [d(S, G)] is low, and high when the latter is high. In other words, the correlation

between d(C, S) and d(S, G) should be high. Although it is high for biased Mondri-

ans, it is not significantly higher than the correlation between d(C, S) and d(S, W).

Thus, the results are again inconclusive in distinguishing between averaging-to-grey

and normalizing-to-white as candidate methods for determining the illuminant color.

Almost all observers who participated in the experiment formed a strong impres-

sion of the illuminant color on first viewing of each sphere. (One observer (MWR)

commented that whereas he could be "quite good" at "guessing the color of the object,

[it was] a curiously difficult thing to guess the color of the illuminant." He performed

the task, he felt, by "answering the question: what hue is this sphere biased toward,"

i.e. by presupposing the grey-world assumption.) Most observers complained that

they could not reliably narrow their choice to a single rectangle in the palette. Thus
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choices for a blue-biased Mondrian under the pinkish illuminant, source Ia.)
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although the colors in the palette were easily discriminable as reflectances, they were

not as illuminants. This coarseness of judgment accounts for at least part of the vari-

ability in observer choice. Some observers also noted that the first impression might

fade after several minutes of viewing, but in a way that affected only the saturation,

not the hue, of their final choice.

All but one observer who participated in the experiments, when asked to consider

which aspect of the image might have served as a guide to the illuminant color, cited

the average color of the sphere, e.g. "the overall cast of color," "the average", "the

shading, tone", the "dominant color." One observer (MSD) felt that he was guided

more by individual patches rather than a global average: he either "looked for the

most brilliant color," to rule out its complementary color as the source, or "looked for

the cast of the greyest patch." Despite the lengthy time interval between successive

trials, successive color contrast effects were still strong enough to induce one observer

(who did not participate in the full experiment) to comment that he could judge

the illuminant color only by using - arbitrarily - the previous sphere as a reference
"white."

Two observers claimed not to have noticed the highlights that appeared in Exper-

iment II. One (MEK) commented that highlights made the task easier and one (JK)

that it made the task harder. Others noted that highlights had no influence on their

choices.

Spheres in which the Mondrian reflectance distribution was biased oppositely from

the actual source color - e.g. a yellowish sphere under a bluish light - appeared odd

to observers aware of the image generation technique (none of whom were included

in the experiment). Naive observers, even when pressed to comment on any unusual

features of the images, did not mention this effect. Thus the conflict between cues

from specularities and the grey-world assumption did not rise to the level of conscious

awareness.
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7.3 Discussion

The above results indicate that, at least for these artificial images, the human visual

system relies on the grey-world assumption (or on the closely-related method of nor-

malizing to white) to estimate the illuminant color, even when cues from specular

reflections provide conflicting information. Whereas for all observers the presence of

specularities influenced choice variance, for none did it increase the accuracy of the

choice.

A number of caveats apply to these conclusions. First, although we can judge the

illuminant color easily and immediately, the judgment is precise only on a scale much

coarser than that on which we can discriminate reflectances. Second, the axiom "cor-

relation does not imply causation" reminds us that we cannot rule out other methods

of computing the illuminant color simply because observer responses correlate with

the grey-world estimate. Third, the phrase at least for these artificial images is criti-

cal. Despite the robustness of the results for computer-simulated scenes, they might

be radically different for natural scenes. Computer-generated images have the ad-

vantage of being easily and quantitatively manipulated, but the disadvantage of not

being real. Although the physical stimulus produced by a real sphere under a real

light differs from that produced by the computer image that simulates it, the retinal

responses to the two stimuli are the same. Yet despite the equivalence of the pixel-by-

pixel retinal signal, the observer can usually use other cues to distinguish a real scene

from its computer simulation. For example, in the real world it is rare to see surfaces

with perfectly uniform chromaticity values. Furthermore, Gilchrist has shown that

in ambiguous situations, we use high level information to distinguish reflectance from

illumination edges, information that is missing in most computer simulations. (In

the images used here, high level information concerning the position and number of

light sources is supplied at the outset, and the edges are n, ambiguous.) The range

of light intensities produced by a CRT monitor is also sever., limited in comparison

with the range in the natural world, reducing the amount of information that can
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be conveyed in the size of intensity edges. Finally, at some level the observer must

face the paradox raised by knowing that the monitor is a self-luminous object and

believing that the sphere within it is lit by source outside the monitor. The question

is whether that paradox alters the computation the observer makes to judge the il-

lurninant color. Unfortunately the answer is not known, despite much discussion on

the merits of computer simulations in visual psychophysics.

Some visual illusions more striking in reality than in computer simulations, pre-

sumably because the greater abundance of cues in the real version creates more op-

portunity for conflicting interpretations. The Mach Card illusion, for example, cannot

be reproduced at all by computer simulation (pers. comm., H. H. Bfilthoff). Given

that, it is possible that observers would be more consistent and confident in their

responses if asked to judge the illuminant color on real scenes, but still not certain

that they would continue to ignore information from specular reflections. Despite the

fact that, as Figure 7.5 illustrates, there appears to be sufficient information from

specular reflections to determine the source color, the question remains: is it enough?

The simple fact that the specularities in the images used here are simulated might

rule them out as cues to the illuminant color. (No matter how realistic they appear,

they still do not behave as real specularities. For example, the requirement that the

observer's angle of gaze be fixed obviated the problem that simulated specularities do

not move with angle of gaze, but there might be other features for which we did not

control.) More importantly, in a natural scene, variations in pigment density, surface

orientation, and strength of specularities might provide a far more overwhelming con-

vergence signal. The visual system might have good reason to discard information

deliberately when it arises from a single specularity, while using such information

when it is confirmed at several locations across the scene. That is, the visual system

might operate on the single source assumption, preferring to make a global estimate

that applies fairly well across a scene rather than local estimates that might vary

from point to point. When the assumption is violated by information from a single

location, the system simply reinstates it by disregarding that information. In this
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sense, the results reported here may be taken as support for the argument that the

computation of the illuminant color is global rather than local.

Perhaps the strongest conclusions that can be drawn are (1) human observers are

capable of judging confidently the illuminant color without given a reference "white",

at least for computer simulations of simple scenes without object interreflections; (2)

they appear to do so by averaging to grey or normalizing to white; and (3) specularities

do not play a role in this judgment.

What do these results imply for color constancy? May we conclude that humans

use the same method to judge the illuminant color as to compute constant colors? Is

color constancy consonant with (a) the degree of variabihty in observers' perception

of the illuminant color and (b) the errors predicted by violations of the grey-world

assumption? Answers to these questions await a more quantitative exploration of

color constancy.

164



a-m

a-a

a-

am

aim aim a.m aim am aim aim

Emmam~
a.am

q~m. UM

Lw

'am

am

doom I0

Lw a aLML aw

b . . . .e m n amn

Figure 7.13: Observer MWR's choice of source color (points marked by small x) for
a neutral Mondrian illuminated by a pinkish source (Ila): (a) without specularities,
two trials; (b), with specularities, two trials. Note that MWR's choice varies little
between the two images; the presence of a highlight in (b) appears not to influence
his choice. 165



Chapter 8

Physiological Mechanisms
Underlying Color Computation

Recent results in the neurophysiology of color vision make it possible to explore

mechanisms of color computation at the level of individual cells and pathways. This

thesis raises several questions: Are there "lightness neurons" - neurons with non-

classical receptive fields that compute lightness in one chromatic channel - and if

so, where? What are the spectral characteristics of the chromatic channels in which

color is computed and where and how are the channels represented? Are there distinct
"edge-finding" operators and "filling-in" operators, as suggested by both computa-

tional and psychophysical results, and if so, where are they and how do they interact?

This chapter addresses aspects of these and other questions.

8.1 Physiological Data

8.1.1 Chrominance Cells

In the primate visual system, there are several distinct classes of cells selectively

reponsive to the wavelength and/or color of stimulating light. These "chrominance"

cells are likely to be involved at some level in the computation of color. Although in

reality each class probably consists of a spectrum of types, it may be characterized

by an ideal prototype. The real properties of cells in a class are difficult to itemize
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because different researchers use different techniques to classify cells and because even

cells classed together under one technique do not always satisfy the same criteria. The

following list describes the properties of the prototypes in each class and discusses

why some are more ideal than real. (All data is from Old World monkeys unless

otherwise noted.)

" The ideal single-opponent (Type I) cell has spatially and chromatically oppo-

nent concentric fields, the center and surround each fed by a single cone type.

The center of an L+/M- single-opponent cell gives an ON response to a spot

of long-wavelength light (L+; i.e., increases its firing rate in response to an

increment of long-wavelength light); its surround gives an OFF response to a

larger spot of middle-wavelength light (M-; i.e., increases its firing rate to a

decrement of middle-wavelength light). According to Livingstone and Hubel

[66] about 80 % of the cells in the parvocellular layers of the lateral geniculate

nucleus are Type I; 63 % of layer 4C# cells in V1 are Type I.

" Center-only (Type II) cells have a single circularly-symmetric chromatically

opponent field. An L+M- center-only cell gives an ON response to a spot of

long-wavelength light and an OFF response to a same-sized spot of middle-

wavelength light.

" Broad-band (Type i1) cells have spatially but not chromatically opponent

concentric fields. An on-center broad-band (B-B) cell gives an ON response

to a spot of light of any spectral composition in its center, and gives an OFF

response to light of any spectral composition in its surround.

* Double-opponent cells have spatially and chromatically opponent concen-

tric receptive fields, the center and surround each fed by two cone types in

opponency. The center of an L+M-/L-M+ double-opponent (D-O) cell gives

an ON response to a spot of long-wavelength light and an OFF response to a

middle-wavelength light spot; its surround gives an ON response to an annu-
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lus of middle-wavelength light and an OFF response to a long-wavelength light

annulus.

D-O cells were first reported in goldfish retina [21], and have since been found

in macaque monkey V1 [48, 29, 82], where they constitute more than 50 % of

cells in metabolically active 'blobs' found in all layers but IVA and IVC [66],

and in metabolically active thin stripes in V2 [47]. D-O cells have not yet been

found in the retina or geniculate of primates.

Although D-O cells are abundant within blobs, they are not found outside

of blobs in V1, and they contribute only a small percentage of the total cell

population in visual cortex (e.g., about 10 % of cells in the foveal representation

of layers 11-III, about 4 % in the non-foveal representation [66]).

e A complex double-opponent cell gives a double opponent response to a small

spot of light positioned anywhere within a much larger field (up to 16 times the

optimum size of the spot.) Complex D-O cells constitute less than 5 % of cells

in V2 and are clustered in regions that appear as thin dark stripes when stained

with metabolic enzymes. Complex color-opponent and broad-band cells are also

found in the thin stripes [67].

* Ts'o and Gilbert [105] find modified type II cells rather than double-opponent

cells within blobs in V1. A modified type II cell has a type II cell center and a

broad-band suppressive surround. T'so and Gilbert are unable to elicit single-

opponent responses from annular stimuli presented to the receptive field sur-

round of a modified type II cell, and therefore conclude that it is not a double-

opponent cell. On the other hand, Livingstone and Hubel [66] do not expc-

itly elicit surround responses from cells they classify as double-opponent, but

demonstrate a suppression of the center on and off responses when the central

spot is expanded into the receptive field surround. Daw [21] did elicit single-

opponent surround responses in double-opponent cells in the goldfish retina.

On the basis of the Ts'o and Gilbert classification of modified type II cells, it
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might be concluded that ideal double-opponent cells do not exist in primate

visual cortex.

* Oriented color-opponent cells have oriented, wavelength-selective simple or

complex receptive fields. A "red"-selective complex cell responds best to a bar

of long-wavelength light oriented at its preferred angle, positioned against a

white background in any of several excitatory regions within its relatively large

receptive field [66].

Livingstone and Hubel [66] report that outside of blobs in layers II and III of

V1, 39 % of cells in the foveal representation and 17 % in the non-foveal repre-

sentation are complex oriented wavelength-selective. Michael [83] reports that

13 % of wavelength-selective cells in V1 are simple oriented double-opponent

cells, found almost exclusively in layer IV. Such a cell responds best to a bar of

a preferred color oriented at a preferred angle on a background of the opponent

color. It is not clear whether these cells are in fact the same as the oriented

color-coded cells described in layers II and III and, if not, why they have not

been described in other reports of color-coded cells.

8.1.2 The Chrominance Pathway

The psychophysical demonstrations of the role of edges in lightness and color per-

ception suggest an interaction between two distinct mechanisms: one that finds lu-

minance edges and uses them to bound regions and another that fills in color within

regions. The evidence for the existence of anatomically and physiologically distinct

pathways subserving form and color perception supports the idea of interacting mech-

anisms, but does not yet explain where or how the interaction takes place. DeYoe and

Van Essen [28] summarize the evidence for form information being carried by the par-

vocellular geniculate-V1 blob-V2 thin stripe-V4 subregion pathway and for color in-

formation being carried by the parvocellular geniculate-VI interblob-V2 interstripe-

V4 subregion pathway. Livingstone and Hubel [67] argue that the magnocellular
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geniculate also feeds into the blobs, perhaps providing luminance information as a

third axis in a color space in which the other two axes are red-green and yellow-blue

opponent axes. This is unlikely, since the relatively large receptive fields of magnocel-

lular cells cannot provide the high spatial resolution characteristic of the luminance

domain.

Data from De Valois et.al. [23] and from Logothetis et.al. [68], among others,

indicate that a substantial portion of parvocellular cells are not strongly wavelength-

selective. These may directly provide the luminance information necessary for form

vision. That information may also be carried indirectly by color-opponent cells, as

Young [114] has shown by applying prinicipal component analysis to the data obtained

by De Valois et.al. [23], and as we discuss in section 8.2.1 below.

8.1.3 Extrastriate Color Cells

Computational analyses of the lightness problem suggest that lightness may be recov-

ered from the image irradiance signal by filtering it through a receptive field with a

small excitatory center and a very large inhibitory surround - the receptive field of a

hypothetical "lightness neuron" (see section 8.2). This type of field has been termed
"non-classical". Recent results suggest the presence of similar neurons in primate V4.

Desimone, et. al [27] describe spectrally-selective neurons in V4 with a small excita-

tory center (1-2 degrees) and a large silent suppressive surround (10-12 degrees). The

optimal stimulus for such cells is often a central spot of one wavelength surrounded

by a large stimulus of a different wavelength.

Zeki [116] [117] describes neurons in V4 that appear to have the specific charac-

teristics of lightness (or color) neurons. He defines two types: 'wavelength-selective

color-only' cells which respond to a monochromatic light of a preferred wavelength,

and to patches of the preferred color only within a Mondrian under a range of illu-

minants; and 'color-only' cells which do not respond to monochromatic light but do

respond to patches of a preferred color within a Mondrian under a range of illumi-

nants. Both cells are reported to have large receptive fields, but the extent of the
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surround necessary to evoke (for color-only cells) or influence (for wavelength-selective

color-only cells) the response has not been determined.

Schein (pers. comm.) has recently re-analyzed data that he gathered with Desi-

mone in [27], concluding that there is strong evidence for lightness neurons in V4. A

typical cell in V4 has one or two narrow peaks in the spectral sensitivity curve of its

center (roughly 2 degrees), gives strong ON responses and weak OFF responses with

the same spectral sensitivity, and has a strong suppressive surround with roughly the

same spectral sensitivity of the center.

Further support for the role of V4 in color computation comes from Wild et. al.

[110], who found that V4-ablated monkeys were unable to discriminate between two

Mondrians under illuminants different from those under which they had been trained

on the discrimination task. Normal (V4-intact) monkeys performed well on the task

under a range of illuminants. On other behavioral tasks, including wavelength-,

brightness- and pattern- discrimination tasks, the two groups of monkey performed

at the same level. These results have the dual implication that V4 is crucial to color

constancy and that color constancy is not crucial to all visual recognition tasks.

8.2 Computational Interpretations

8.2.1 The Puzzle of Single-Opponent Cells

Existing theories of color vision seem unable not only to predict but even to explain

the puzzlingly high number of single opponent neurons in the visual pathway. From

a computational viewpoint, such cells appear nonsensical at first sight because they

mix chromatic and spatial information in a seemingly impenetrable way (as Marr

observed in 1982 [74]). For analyzing luminance information, it would seem to make

more sense to compare activities in cones of like type across space (e.g., L+ center/

L- surround), and for analyzing chrominance information, to compare activities in

cones of opposite type at the same location (e.g., L+M- center).

In fact, the visual system may instead be forced by the physical and evolutionary
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limitations of its design to create single-opponent cells (although, as discussed below,

these are not the ideal single-opponent cells described above). Yet it still succeeds in

meeting its computational goals. Single-opponent cells serve double duty admirably

well.

One goal of the system is to collect and exploit color information: this requires

photoreceptors of different spectral sensitivities in the retina. Another goal is to

achieve high spatial resolution in the luminance domain, i.e. to maximize visual acu-

ity. This requires closely packed photoreceptors in the fovea, and an ocular optics

closely matched to their spacing. The resolving power of the human eye is limited by

diffraction at the pupil and refraction in the anterior chamber, inducing an effective

cutoff spatial frequency of .round 60 cycles/degree (cpd). The maximum distance

between receptors in a regular array that will allow reconstruction of a 60 cpd grating

without abasing is, according to the sampling theorem, approximately 30 seconds of

arc. The human foveal cones are in fact arranged perfectly to meet these constraints.

They lie in a triangular array (in which each cone is surrounded by six nearest neigh-

bors) with a row spacing of 2.4-2.6 pm, which corresponds to 30-32 seconds of arc

[111]. 1

Several lines of evidence suggest that the dense lattice of receptors in the fovea in

turn feeds a dense lattice of center-surround ganglion cells many of which have a single

cone contributing to the center. Two-point visual acuity (approximately 1 minute of

arc [109]) requires the existence of ganglion cells with a single cone contributing to

the center [73], for example. The fact that gratings with spatial frequency at the

Nyquist limit can be seen at low contrast when they are projected directly on the

fovea using laser interference fringes, thereby bypassing the ocular optics, also implies

that the spatial resolution of the ganglion cells must match that of the receptors [111].

Physiological data on the primate [22, 26, 35, 36], and anatomical data on the cat [11]

also suggests that some ganglion cell centers are each fed by a single cone. Recently,
1As Williams [111] notes, the row spacing determines the Nyquist limit because "the lowest spatial

frequency gratings that can produce aliasing ambiguity in a triangular array are those oriented in
one of the three orientations lying parallel to rows of sampling elements."
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Kaplan (pers. comm.) has found evidence that many single-opponent cells even at

the level of the lateral geniculate nucleus have centers each fed by a single cone.

The surround of center-surround cells provides a filter through which the retinal

image is smoothed. In order to minimize noise in the image, the output of this filter

must be sampled as finely as possible. That is, if there are randomly-placed gaps in

the surround, its output will be more variable than if there are no gaps. This implies

that the surround of center-surround cells should be fed by all the nearest neighbors

of the cone feeding the center. But this in turn implies that the ideal single-opponent

cells described above cannot exist, at least not abundantly enough to supply complete

coverage of the visual field. That is, if L and M cones are closely packed in a triangular

array as the physiological, anatomical and psychophysical data suggest, then they

cannot create enough L+/M- and M+/L- cells with center and surround each fed

by pure opponent cone types, unless holes are allowed in the surround.

The numbers of such pure opponent cells are limited by the regularity of the

cone mosaic and by the relative numbers of the two types of cones. Although the

proportion of S cones in the primate retina has been determined by several methods,

all of which converge to the same number, the relative numbers of L and M cones in

the fovea are less well established. Smith and Pokorny [1031 estimated an L:M ratio

of 1.6:1 for the Judd Standard Observer by fitting the cone spectral sensitivities to

the luminosity function VA. More recent estimates for the L:M ratio of the human

fovea, based on the detection of spatially tiny flashes of light, are 1.46:1 - 2.36:1 [16]

and 1.6:1 - 4.0:1 [107]. Marc and Sperling [72] conclude from anatomical data that

in the baboon retina the ratio is reversed, with 40 x 10' M cones/mm2 and 20x 103

L cones/mm 2 at eccentricity 0.5 degrees.

If there were exactly 2 L cones for each M cone and the two cone types were

arranged in regular arrays, then the only allowed single-opponent cells with purely

opponent center and surround would be the M+/L- or M-/L+ types (see Fig-

ure 8.1(a)). A cell with a single L cone feeding its center by necessity would have L

and M cones intermixed in its surround.
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Recently, Packer et. al. [88] have obtained results which imply that the L and M

cones do not separately form regular submosaics, but instead are arranged in irregular

arrays that interleave to form a regular mosaic of both cone types. By selectively

stimulating the L and M cones in the fovea, Packer et. al. have demonstrated that

the cutoff frequency above which aliasing is obtained is the same for the L and M

cone submosaics as for the L+M mosaic, although the image noise increases when

the submosaics alone are stimulated. If the L and M cone submosaics are random

as these results imply, then neither L center/M surround nor M center/L surround

single-opponent types may be pure. Both will have a mixture of L and M cones in

their surrounds, with L cones generally more heavily weighted (see Figure 8.1(b)).

Lennie et. al. [64] simulated single-opponent cells constructed from retinal mosaics

in which the distributions of the L and N1 cones and their contribution weights to

center and surround were systematically varied. They found that cells whose centers

are fed by single cones but whose surrounds draw their inputs from a random mixture

of cone types best fit the data obtained by Derrington et. al. [25] on the range of

chromatic opponency ii primate lateral geniculate nucleus.

We are now confronted with a paradox. Long- (L) and middle-wavelength-selective

(M) cones are intermixed in the fovea: the system requires them to be, in order to

analyze spectral information. But as a result, single-opponent cells mix spectral and

spatial information, since the center must be spectrally different from the surround.

In order to achieve visual acuity, avoid aliasing and at the same time gather color

information, the system must pay by creating an imperfect single-opponent cell! How

does the system compensate?

One attractive hypothesis is that this is the reason for the strong overlap in the

sensitivity spectrum of long- and middle-wavelength-selective cones (see Figure 1.1),

and possibly for the near absence in the fovea of blue cones (which have a quite

different spectral sensitivity). Thus, for visual acuity in the luminance domain, the

spectral differences between the center and surround of single-opponent cells may

effectively be negligible. (The difference in sensitivity of the two cone types to light
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Figure 8.1: (a) L and M cones in a 2:1 ratio, arranged in regular submosaics so that
each M cone is surrounded by L cones only. All L cones have a mixture of cone types

in their surrounds. The circled regions illustrate typical center-surround cells thus
allowed. (b) L and M cones in a 2:1 ratio, but arranged in more realistic random

submosaics. Now both L and M cones may form the centers of pure cone-opponent
cells (circled regions), but not everywhere in the fovea.

175



of the same wavelength could be compensated for by a change in gain of the center

or surround response.)

Recent results from Nathans et.al. [87] put these comments into an evolutionary

perspective. The close homology between genes coding for the L and M cone types

suggest that the two arose as mutations of a single gene coding for a single cone type.

This suggests that our ancestors had only one cone type in the fovea (with perhaps

a second type more sparsely distributed)2 , closely packed for high acuity. When the

advantage of color vision became obvious, evolution selected those mutations which

retained the structure of the retina but simply, and only slightly, changed the pigments

of some of its receptors.

Ingling and Martinez [53] have shown that for ideal single-opponent cells, it is

not necessary to invoke similar spectral sensitivities of the cone types in order to

extract a luminance signal from them. They illustrate that at high spatial frequencies,

single-opponent cells effectively become luminance change detectors, by summing

cone inputs. At low spatial frequencies, they are chrominance change detectors (see

Figure 8.2).

Barlow has suggested (pers. comm.) that single-opponent cells might simply be

one stage in the synthesis of double-opponent cells. (In the sense that they are only

one of a few cell types constructed at the retinal ganglion level, they must be building

blocks for cells at further stages in the visual pathway.) His scheme is sketched in

Figure 8.3(a): single-opponent cells of like opponency are summed from one region

of the visual field to create the center of a double-opponent cell; the responses of

similar single-opponent cells are inverted before converging to create the surround.

This is equivalent to disentangling the spatial and chromatic information that is

intertwined in their output, but the chromatic information can be retrieved only at

'Gouras and Zrenner [37] suggest that the short-wavelength (S) cone might have evolved from
the rod, to which it is electrophysiologically similar, in order to provide color contrast against "an
existing midspectral cone mechanism," which itself split into two mechanisms later in evolution to
create three axes for color vision. This implies that early in evolution rods and cones were intermixed
in the fovea and that early color vision, mediated by the single midspectral cone and the S cone,
had even coarser spatial resolution than trichromatic color vision.
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the expense of spatial resolution (see Figure 8.3(b)). It suggests that the center of a

double opponent cell should be at least the same size as the entire receptive field of

a corresponding single opponent cell. In principle, of course, double opponent cells

with similar low resolution receptive fields could be built directly from the receptors

without the intermediate step of small single opponent cells.

L +M L-M
£ 2

I L +

M - F pace

single-opponent luminance + chrominance

detector detector

Figure 8.2: The response of an ideal single-opponent cell in one spatial dimension
can be decomposed into the responses of a luminance change detector at high spatial
frequencies and a chrominance chant,. detector at low spatial frequencies. Redrawn
from [53].

On the basis of these arguments, one may speculate that high visual acuity is

incompatible with widely different cone spectral sensitivities. Thus, animals that put

a premium on color vision at the expense of acuity might have receptor sensitivities

more broadly separated than those who value acuity for survival (e.g. primates and

birds). The roach, a cyprinid fish, has four photoreceptor types with well-spaced

spectral sensitivities [9]. One might conclude that, to find its food, the fish does not

require high acuity spatial vision.
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)

Figure 8.3: (a) Single-opponent cells converge to create a double opponent cell. (b) A
center surround receptive field - the sum of two gaussian distributions - is convolved
with a large gaussian: the outcome is effectively an opponent center only receptive
field.
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8.2.2 Double-Opponent Cells as Segmentation Operators

At first sight, the duty of double-opponent (D-O) cells seems to be to signal changes

in a hue index like that defined in Equation 6.3 (hi 1). But the question of how the

cone opponency is implemented in the D-O cell center and surround is critical in

determining what precisely the D-O cell does signal.

The receptive fields of D-O cells have typically been described as center-surround

with opposing cone-opponent inputs to the center and surround, e.g. L + M- in

the center and M + L- in the surround. If D-O cells indeed exist in this ideal form

questions still remain on the nature of the opponency within and between the center

and surround. Are cone inputs combined linearly? If so, then if the cone responses

themselves are the logarithms of image irradiance, the D-O receptive field may be

described as

(log 1 L - log 1"onll(log IM - log IL)surround

or as

log( IL )center// log( --- )surround

where IL = kLE(r)pL(r) and L and M label the long- and middle-wavelength-

sensitive photoreceptors respectively. If, further, the center and surround responses

are combined linearly then the operation the D-O cell performs may be written as

IMG •*V log(7 ),

i.e. as the gaussian (G) of a spatial derivative operator on the log of the hue index
hij.

As the preceding string of "ifs" suggests, there are other interpretations of the D-

O cell receptive field. If the interaction between the center and surround is division

rather than subtraction then the D-O cell may register
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(log IL

(log )center

(log lM) u

a quantity that fits less easily into a segmentation scheme. In fact, recent reports from

Kaplan (pers. comm.) suggest that the interaction between center and surround in

single cone-opponent (Type I) cells is of the shunting inhibition type. This suggests

that Type I cells, usually described as L+,nter//M-.urround are in fact registering
L ...... which, if L = log IL as above, becomes

log Ir/nter

log 'suround

If on the other hand, the cone responses mi y be considered linear in small oper-

ating ranges, Type I cell responses become

urround

Since Type I cells might be primary building blocks for D-O cells (one Type I cell
per D-O center), this would suggest that the D-O center, instead of being log(jIL), is

either logI or

In the absence of more restrictive data, the possibilities are numerous!

8.2.3 Lightness Neurons

From the computational point of view, it is unlikely that the physiological visual sys-

tem uses a retinex-type lightness algorithm to compute color in a three-dimensional

world in which shape, shading and shadows confound the intensity signal. Yet it is

possible that the visual system performs a similar computation using similar oper-

ations. In what follows, we speculate on the sorts of basic physiologic._l operations

that lightness algorithms would require for their implementation.

The two basic operations in lightness algorithms - spatial differentiation and in-

tegration - imply two basic types of operators that the human visual system should

possess if it does implement a lightness algorithm. In the implementation of the
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lightness algorithm the two steps acquire crucially different characters: differentia-

tion is a local process that mediates spatial decomposition of the intensity signal by

separating illumination gradients from reflectance changes, and integration is a global

process that mediates spectral normalization by averaging the reflectance over a large

portion of the visual field. The local operator must therefore take the difference in

light intensity between nearby parts of the image, whereas the global operator must

sum light intensity from virtually all parts of the image.

Spatial differentiation

The local operator may in turn be of two types: the directional gradient opera-

tor which responds best when the direction of maximum intensity change coincides

with its preferred direction (Land, Crick, Blake; see Chapter 4) and a nondirectional

Laplacian operator with a circularly symmetric receptive field (Horn). The formal

arguments in Chapter 4 show that each local operator is effectively weighted by its

distance from the point at which lightness is evaluated.

Equation 4.20 suggests that the gradient and Laplacian operator may coexist and

work in conjunction, the sum of their responses over different parts of the visual

image yielding lightness. The contribution from the Laplacian operator at point

(C,77) to the lightness at point (x,y) is the same in any direction at a given radius

r, because the Laplacian is isotropic. Thus, the Laplacian operator simply sends out

the same signal along its connections in all directions. The gradient operator, on

the other hand is directional and therefore its contribution from point ((, 17) must be

weighted appropriately according to its orientation with respect to the point (x, y). In

the physiological implementation of the second term of Equation 4.20, for example,

the connections between the operator neurons and the lightness neurons must be

highly specific, so that the operator neuron sends out either a single signal in a single

direction, or several signals, different in each direction.

The contribution from the Laplacian operator is weighted by a factor of In r, so

it would seem at first glance that points further away from (z, y) contribute more to
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the lightness there than closer points. In fact, In r increases slowly enough so that

at the high end of the range of known lengths of cell-to-cell connections (where the

longest is _ 10 times that of the smallest), In r is practically constant.

As Figure 8.4 illustrates, the Laplacian of Equation 4.19 (convolved with a Gaus-

sian, see later), operating at an edge, gives a strong positive result on one side and

an equally strong negative result on the other. The sum of the two weighted signals is

on the order of A(' -), where A is the amplitude of the signal on either side, r0 is the

distance to the nearest side, and Ar is the additional distance to the far side. Thus,

for large r, the sigr.als sent by Laplacians on either side of an edge tend to cancel

each other at (x, y). That is, if the sum is taken locally and then sent to (x, y), it will

tend to attenuate over the long distance, and, similarly, if the two weighted signals

are sent independently and then summed, fluctuations over the distance will tend to

equalize them. Nearby edges, for which Ar is a significant fraction of r, will therefore

contribute most to the lightness.

I:r
Figure 8.4: An intensity edge convolved with a DOG filter, yielding a strong positive
result on one side of the edge and a strong negative result on the other.

The gradient operator, in contrast to the Laplacian, takes the difference in in-

tensity signals across an edge, and thus sends a large, robust signal to (x,y). But
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this signal is weighted by i, which falls off rapidly for points far away from (x,y).

Beyond a critical distance r, additional contributions from the gradient operator will

therefore not change significantly the lightness at (x, y), so, again, nearby edges will

contribute most.

Both local operators thus imply an upper limit on the necessary length of cell-to-

cell connections. Interestingly, weighting of nearby edges may offer a partial expla-

nation of the phenomenon of simultaneous contrast, which has elsewhere been used

as an argument against Land's original retinex algorithm.

The recent discovery of double opponent cells in primate V1, V2 and V4 points to

the Laplacian operator as the most likely candidate in the physiological computation

of color [66]. (Interestingly, Land's most recent retinex operator is a center-surround

filter.) The double opponent cell, as do other center-surround cells, performs not

the Laplacian in the formal statement of Horn's algorithm (Equation 4.19) but the

difference-of-Gaussians (DOG) operation, equivalent to blurring the intensity signal

through a Gaussian filter before applying the Laplacian. In this respect, double oppo-

nent cells perform exactly the same operation as in Horn's iterative implementation

and in the multiple scales algorithm, as Equations (4.9) and (4.25) make clear. In

fact, the application of the Gaussian serves an essential computational purpose in

eliminating noise from the intensity signal and thereby stabilizing the implementa-

tion.

Double-opponent cells differ in another way from the simplest operator that Horn's

algorithm would predict. The latter would perform the Laplacian on the intensity

signal in one photoreceptor channel. Double-opponent cells have a center-surround

receptive field organization with opposite pairs of opponent cone inputs to the center

and surround (e.g., L+M- in the center, and L+M- in the surround) and thus

perform spatial differentiation on a new channel formed by linear combination of the

photoreceptor channels. Because a threshold operation is applied to the result of the

Laplacian, the D-O cell operation is not equivalent to performing the Laplacian on

the intensity signal in the photoreceptor channel and then taking linear combinations.
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That is,

(TV 2[S' - Sj]) # (TV 2S') - (TV2S')

Thus, the axes on which the lightness triplets are plotted in the original retinex

algorithms (e.g., long- , middle- and short- wave axes) cannot simply be rotated into

the physiological color-opponent axes.

At least one of the types of oriented wavelength-selective cells described above

could act as a gradient operator.

The above arguments suggest that if the two types of operators coexist, they may

be localized in different areas corresponding to different regions of the visual field.

Because the effective weight of each operator falls off with distance, neither would

be expected to contribute much from the periphery to the computed lightness in the

central visual field. Thus, both may be expected to concentrate in the representations

of the foveal and parafoveal regions. But because the gradient operator is more

sensitive to the difference in intensity signals across an edge, it may also be found in

the peripheral field representation, where it may correct for offsets in the surround

reflectance.

Spatial integration

The different lightness algorithms predict long-range connections of different types.

Horn's iterative method for integrating the Laplacian could be implemented, for ex-

ample, by an array of interconnected center-surround cells, the outputs of which feed

back into and are propagated across the array until a stable solution is reached, with-

out explicit long-range connections. The sum over the responses of gradient operators,

in contrast, would be difficult to achieve without explicit long-range connecting axons

or dendrites.

The multiple scales method for integrating the Laplacian suggests a third way

to implement the global process of spectral normalization. Rather than perform
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an iteration over time, as in Horn's method, in the multiple scales method center-

surround cells may perform an integration over space, again without explicit long-

range connections. The sum is taken over a collection of center-surround cells of

different sizes covering the same central point in the visual field. If the multiple

scales are collected in a single anatomical area, cells with larger receptive fields would

necessarily be built up by cells with smaller receptive fields from stages lower in the

visual pathway. Alternatively, multiple scales may exist at different anatomical levels

in the visual pathway; each successive scale could be built up by filtering the one at

the previous stage through a Gaussian. The final-stage cell would be expected to have

a relatively narrow center, and a large, shallow surround (a "non-classical" receptive

field: see Allman et. al. [2]).

There is evidence of long-range connections in several cortical areas. In V1, the

longest connections appear to be from blob to blob in layers II and III [66], and the

typical length of 2 mm in layers II and III suggests that a single blob projects only

to its nearest neighbor blobs. 3 In V2, intrinsic connections extend 2-3 mm, and in

V4, 3.5-4 mm [97].

Each blob in tne foveal representation covers only a piece of the cortical area

devoted to a single point in the visual field. The absence of explicit connections be-

tween blobs more distant from each other leaves open the possibility that the pattern

of blobs and interblob connections forms an interconnected array of cells performing

a Horn-type iteration.

Alternatively, blobs may implement a multiple scales algorithm, by deliberately

clustering cells with a ri ,- of receptive field sizes centered on the same point. The

present lack of data on the variation of receptive field size within a blob makes it

difficult to judge whether such a sum is possible. The connections between blobs

could in this scheme serve other functions, such as to compare responses between cells

of the same receptive field size across the field in order to compute an appropriate

3 Rockland and Lund [97] also report that connections in VI attain a length of 3 nm in the Stria
of Gennari, but it is not known whether these are also interblob connections.
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threshold.
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Appendix A

Integrating Image Irradiance in
Sensor Channels

This appendix illustrates how, by transforming the photoreceptor activities, to de-

compose the image irradiance equation into a sum of two components representing

the surface reflectance and the effective surface irradiance.

In most natural scenes, the light reflected from objects includes both diffuse and

specular components. To simplify the image irradiance equation, we assume that

all reflection is Lambertian, or that there are no specularities. In this case, the light

reflected by a surface is solely the product of its surface spectral reflectance (i.e. body

reflectance) and the irradiance it receives. The amount of reflected light that reaches

the eye further depends on the angles between the illumination source, the reflecting

surface, and the eye. The response of the eye to the light depends on the spectral

sensitivity of its photoreceptors. We may therefore writt e light signal registered

by the eye as:

S"(x) = log I a"(A)p(A,x)E(A,x)dA, (A.1)

where v labels the spectral type of the photoreceptor (i, = 1, ...4 for humans, count-

ing 3 cone types and 1 rod type), at (A) is the spectral sensitivity of the vth-type

photoreceptor and S"(x) its activity at image location x. p(A, x) is the surface spec-

tral reflectance and E(A, x) the effective irradiance. We group together the geometric
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factors influencing the intensity signal by defining the effective irradiance as the il-

lumination modified by the orientation, shape, and location of the reflecting surface.

The effective irradiance is the intensity that the surface would reflect if it were white,

that is, if p(A,x) = 1.

Equation A.1 is not separable into a product of reflectance and illumination com-

ponents in a single color channel. To make :c separable, we may make a transfor-

mation to new color channels that are combinations of the photoreceptor activities.

We first choose basis functions p'(A) and q'(A) such that for most naturally occurring

illurninants and surface reflectances

p (A. x) , z q'() )r'(x). (A.2)

The basis transformation (for a review of the origins of this idea see Maloney [70];

see also Buchsbaum [151 and Yuille [115]) leads to the following equation

S'(x) = Tie' (x)r (x), (A.3),

where the tensor T is defined as

Tij = JdAa(A)p(A)q(A),

where v = 1,...4 and i,j = 1,...N, the p's and the q's are the basis functions for

the illuminant and for the albedo, respectively, and the sum is taken over repeated

indices.

To simplify further analysis, we impose the conditions that the pi = qi and that

the pi(A) are orthogonal with respect to the aL(A) under integration over A. That

is, T. = f a"(A)6ij(A)dA. This orthogonality is insured if, for example, tic p (A) do

not overlap with respect to A. In the simplest but least physiological case, the basis

functions may be monochromatic: p'(A) = b(A - Ai).
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Substituting A.2 into A.1 then yields:

SV(x) = log e'(x)r'(x) J dAaL(A)p(A)pi(A). (A.4)

If we define the matrix T" = fdAa'(A)pi(A)pi(A), where v = 1,...4 and i =

1, ... N, we obtain

exp [S"(x)] = Z Tie'(x)r(x). (A.5)

If the p'(A) are suitably chosen, Ti is invertible. Then the linear equations repre-

sented in A.5 yield the following solution:

(T,) exp [SV(x)] = e'(x)r'(x) (A.6)

or.

st (x) = e' (x)r (x) (A.7)

where s(x)= (Tj,)- 1 exp [S'(x)]. Taking logarithms of A.7 yields

log s'(x) = log e'(x) + log r'(x)

or

9'(x) = E'(x) + Pi(x) i= 1,. .. , N, (A.8)

where 9'(x) = log s'(x) and so on, which is the desired equation. The extension to

the Lwo-dimensional case is clear.

9'(x) is a linear combination of the activty of different types of photoreceptors.

It is important to note that the index i labels not the color channels associated

with the spectral sensitivities of the different photoreceptor types, but new channels

which may be similar to the biological color-opponent channels. There is no a priori

limit on the number of new channels formed by linear combinations, but efficiency of

information transmission would require it to be close to the number of photoreceptor
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types. Furthermore, although we could use the pseudoinverse of T rather than the

inverse, a necessary condition for the latter to exist is that there are exactly as many

new channels as photoreceptor types.
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Appendix B

Channels for Spectral
Normalization

Each narrow-band light in McCann et. al.'s [79] illuminant may be approximated by

a monochromatic light: E(As) at 450 nm stimulates the short-wavelength-sensitive

(S) cone only; E(AM) at 530 nm stimulates the L and M cones only; and E(AL) at 630

nm stimulates the L cone only. Thus the illuminant for one viewing may be written:

El(A) = El(As) + E'(AM) + El(AL)

The photoreceptor response may be written as a function of the integral:

I au(A)EI(A)R(A)

where R(A) is the surface reflectance of a Mondrian patch. The integral becomes a

sum:

a (As)E'(As)R(As) + a (A)El(AM)R(AM) + a(AL)EI(AL)R(AL)

which we may write as:

av •e I r

where r = (rs, rM, rL) = [R(As),R(AM),R(AL)], e = (eS,eM, eL) and so on. Von

Kries adaptation says that for color constancy to hold under a change in illuminant

from el to e :
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av ei • r a' • e 2 . r
k-, k '2

where each side of the equation represents the lightness in the vth channel for a

different viewing.

McCann et. al. [79] choose k' = f aL(A)EI(A)Rw(A) to compute lightness and

compare changes in the computed value with changes in perception. Rw(A) is the

reflectance of a standard white paper, i.e. Rw(As) = RW(AM) = Rw(AL) = rw. Thus

k' = rw(a' -e). If lightness is indeed computed in the cone channels, then it is easy to

see that multiplicative changes in E(As) alone will not affect the computed lightnesses

at all. For example. the lightness in the S cone channel has no contributions from eM

or" 6L:

a esrs a esrS rS
rwaia~ rwvase2 rwj

Since there is no change in illumination seen in the L and M channels, lightness

does not change there either. Changes in the middle- or long-wavelength lights alone

do not change the computed lightnesses in the M or S channels, but will in general

change the lightness in the L channel., which is stimulated by both the changed and

unchanged lights. This is in fact the pattern of changes in observers' color perception

reported by McCann et. al., supporting the idea that normalization is performed on

the original cone channels.

If normalization were done on the opponent-color channels instead, for example,

we may expect a different pattern of color changes. For the blue-yellow (deuteranopic)

channel, aD(A) - aM(A) + aL(A) - aS(A). Under changes in the short-wavelength light

alone, the computed lightnesses are generally not equal:

aL I M I LI L I MI LI S 2
a LrL + aeMrMf + a emrm - a srs a e~~rL + a emrm + a emrmf - a esrsI 1 1 1 ame I L It _ aS 2)

rw(aLel + aMe + - aSel) rw(aLeL + e + e e

In general, changes in es will not be compensated by changes eL and em. Changes

in the middle-wavelength light alone will also tend to affect the blue-yellow channel
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more than the red-green (L - NI) because both the L and M channels see the change,

whereas the S channel does not.
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Appendix C

"Learning" Techniques Related to
Optimal Linear Estimation

C.1 Recursive Estimation of L

It is of particular import for practical applications that the pseudoinverse can be

computed in an adaptive way by updating it when new data become available[l].

Consider again Equation 5.5. Assume that the matrix Y consists of n - 1 input

vectors and Z of the corresponding correct outputs. We rewrite Equation 5.5 as

L,,-, = Z.- 1 Yt_. (C.1)

If another input-output pair y, and zn becomes available, we can compute Ln recur-

sively using the formula

L= L 1 + (Zn - , (C.2)

where

tT = Yn (Y -) (C.3)n1 + yT(y,_:y/_)-,y'

provided that (Y_.Y'i) - 1 exists, for which it is necessary that the number of

columns in Y is greater than or equal to the dimension of y. The case in which
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(1E ,i_)-1 does not exist is discussed together with more general results in Albert

[1]. Note that (z, - L,,_y,) in the updating equation (C.2) is the error between the

desired output and the predicted one, in terms of the current L. The coefficient t, is

the weight of the correction: with the value given by Equation C.3 the correction is

optimal and cannot be improved by any iteration without new data. A different value

of the coefficient is suboptimal but may be used to converge to the optimal solution

by successive iterations of Equation C.3 using the same data.

C.2 Connections to Other Statistical Techniques

The optimal linear estimation scheme described in Chapter 5 is closely related to

a special case of Bayesian estimation in which the best linear unbiased estimator

(BLUE) is found. Consider Equation 5.3: the problem is to construct an operator

L that provides the best estimation Ly of z. We assume that the vectors y and z

are sample sequences of Gaussian stochastic processes with, for simplicity, zero mean.

Under these conditions the processes are fully specified by their correlation functions

E[yyT] = Cs, E[zy' ] = Cy (C.4)

where E indicates the expected value. The BLUE of z (see [1]) is, given y,

eat = (0.5)Z.° = y CC;Y) (C.5)

which can be compared directly with the regression equation

Ly = ZyT(yyT)-y. (C.6)

The quantities ZYT and yyT are approximations to C,, and Cy, respectively,

since the quantities are estimated over a finite number of observations (the training

examples). Thus there is a direct relation between OLUEs and optimal linear esti-

mation. The learned operator captures the stochastic regularities of the input and

output signals. Note that if the input vectors y are orthonormal, then L = ZYT and
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the problem reduces to constructing a simple correlation memory of the holographic

type (see [92, 91]). Under no restrictions on the vectors y, the correlation matrix
ZYT may still be considered as a low-order approximation to the optimal operator

(see Kohonen [55]).

If the operator L is space invariant, Equation C.5 is equivalent to the formulation

of an optimal linear filter also called the matched filter. Equation C.5 becomes

Zest = H 't • Y, (C.7)

with

HOpt =(D

where 'P,,is the ensemble cross power spectrum of output and inputs and 4, is the

power spectrum of the inputs. Y and Z are the Fourier transforms of the inputs and

estimated outputs, respectively, and H is the transfer function of the optimal filter.

Both 4D and D. can be estimated from the set of z and y example pairs.
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